SQL子查询无法生成正确的结果

时间:2016-09-30 02:02:15

标签: mysql sql subquery

我正在使用MySQL 5.7.15

我正在尝试获取与where子句匹配的所有业务的列表(在某个位置附近),我需要获得最喜欢的图片。这是复杂的地方,如果企业的计划类型不是1,那么我需要最喜欢的图片,其中most_liked_picture.business_picture的值为1,否则我只需要最喜欢的图片。为了做到这一点,我创建了一个外部查询,它将为我提供所有业务和带有子查询的内部查询,以便为我提供满足order by子句的最喜欢的图片。

两个内部查询未产生所需结果。它给出了一些行但不是全部的结果,我觉得很奇怪。目前我还没有尝试将内部查询的结果限制为每个外部查询只有一个,因为我无法获得内部查询子以产生正确的结果。

当我打破子查询时,我得到了正确的结果,所以我知道查询是好的,它必须是我组合它们的方式?

我在SQL中自学,所以如果你看到一些不标准的东西或者很奇怪,请温柔。

这是表格结构和数据:

businesses
+----+----------------------------+-----------+------------+----------------|
| id | name                       | lat       | lng        | point_location |
+----+----------------------------+-----------+------------+----------------|
|  1 | test_business_1            | 28.418908 | -81.586254 | POINT(lng,lat) |
|  2 | Sea_World                  | 32.764800 | 117.226600 | POINT(lng,lat) |
|  3 | Disneyland                 | 33.812100 | 117.919000 | POINT(lng,lat) |
|  4 | Disney World               | 28.417839 | -81.581235 | POINT(lng,lat) |
|  5 | business near Disney World | 28.408642 | -81.572607 | POINT(lng,lat) |
+----+----------------------------+-----------+------------+----------------|

business_plans
+----+--------------+-------------+---------+------------+------------+
| id | plan_type_id | business_id | user_id | start_date | end_date   |
+----+--------------+-------------+---------+------------+------------+
|  1 |            1 |           1 |       1 | 2015-01-01 | 2015-12-31 |
|  2 |            2 |           1 |       2 | 2016-01-01 | 2016-12-31 |
|  3 |            2 |           2 |       2 | 2016-01-01 | 2016-12-31 |
|  4 |            1 |           3 |       1 | 2016-01-01 | 2016-12-31 |
|  5 |            2 |           4 |       1 | 2016-01-01 | 0000-00-00 |
+----+--------------+-------------+---------+------------+------------+

pictures 
+----+-------------+---------+---------------------------------------+---------------------------------------+-----------+------------+---------------------------+----------------+-------------------+-------------+----------------+------------------+-----------------------+---------------+---------------------+---------------------+---------------------+---------------------+
| id | business_id | user_id | image_path                            | title                                 | lat       | lng        | point_location            | lifetime_likes | lifetime_dislikes | month_likes | month_dislikes | business_picture | business_main_picture | business_icon | effective_date      | expire_date         | updated_at          | created_at          |
+----+-------------+---------+---------------------------------------+---------------------------------------+-----------+------------+---------------------------+----------------+-------------------+-------------+----------------+------------------+-----------------------+---------------+---------------------+---------------------+---------------------+---------------------+
|  1 |           2 |       1 | sea world image_path_1                | sea world logo                        | 32.764800 | 117.226600 | POINT(lng,lat)             |              5 |                 5 |           5 |              5 |                1 |                     0 |             1 | 2016-01-01 00:00:00 | 2016-12-31 00:00:00 | 2016-01-01 00:00:00 | 2016-01-01 00:00:00 |
|  2 |           3 |       0 | disney_image_path_2                   | disney main picture                   | 33.812100 | 117.919000 | POINT(lng,lat)             |              1 |                 0 |           1 |              0 |                1 |                     1 |             0 | 2016-01-01 00:00:00 | 2016-12-31 00:00:00 | 2016-01-01 00:00:00 | 2016-01-01 00:00:00 |
|  3 |           3 |       2 | disney user uploaded pic              | NULL                                  | 33.812100 | 117.919000 | POINT(lng,lat)             |              5 |                 5 |           5 |              5 |                0 |                     0 |             0 | 2016-01-01 00:00:00 | 2016-12-31 00:00:00 | 2016-01-01 00:00:00 | 2016-01-01 00:00:00 |
|  4 |           3 |       0 | disney expired pic                    | disney expired pic                    | 33.812100 | 117.919000 | POINT(lng,lat)             |             20 |                 0 |          20 |              0 |                1 |                     0 |             0 | 2016-01-01 00:00:00 | 2016-01-01 00:00:00 | 2016-01-01 00:00:00 | 2016-01-01 00:00:00 |
|  5 |           3 |       2 | disney_highest_points                 | disney highest points                 | 33.812100 | 117.919000 | POINT(lng,lat)             |             10 |                 2 |          10 |              2 |                1 |                     0 |             0 | 2016-01-01 00:00:00 | 2016-12-31 00:00:00 | 2016-01-01 00:00:00 | 2016-01-01 00:00:00 |
|  6 |           4 |       1 | disneyworld_highest_business_pic      | disneyworld_highest_business_pic      | 28.417839 | -81.581235 | POINT(lng,lat)             |             20 |                 1 |          20 |              1 |                1 |                     0 |             0 | 2016-01-01 00:00:00 | 2016-12-31 00:00:00 | 2016-09-22 22:40:50 | 2016-01-01 00:00:00 |
|  7 |           4 |       1 | disneyworld_highest_user_point_pic    | disneyworld_highest_user_point_pic    | 28.417839 | -81.581235 | POINT(lng,lat)             |             45 |                 1 |          45 |              1 |                0 |                     0 |             0 | 2016-01-01 00:00:00 | 2016-12-31 00:00:00 | 2016-09-22 22:36:46 | 2016-01-01 00:00:00 |
|  8 |           5 |       2 | near_disneyworld_highest_business_pic | near_disneyworld_highest_business_pic | 28.417839 | -81.581235 | POINT(lng,lat)             |             20 |                 1 |          20 |              1 |                1 |                     0 |             0 | 2016-01-01 00:00:00 | 2016-12-31 00:00:00 | 2016-09-23 00:08:20 | 2016-01-01 00:00:00 |
+----+-------------+---------+---------------------------------------+---------------------------------------+-----------+------------+---------------------------+----------------+-------------------+-------------+----------------+------------------+-----------------------+---------------+---------------------+---------------------+---------------------+---------------------+


users
+----+-----------+--------------------+
| id | username  | picture_path       |
+----+-----------+--------------------+
|  1 | test      | user1_picture_Path |
|  2 | username2 |                    |
|  3 | username3 |                    |
|  4 | username5 |                    |
|  5 | username5 |                    |
|  6 | username6 |                    |
|  7 | username7 | NULL               |
+----+-----------+--------------------+


user_picture_swipe
+----+------------+-------------+---------+-------+
| id | picture_id | business_id | user_id | liked |
+----+------------+-------------+---------+-------+
|  1 |          1 |           2 |       2 |     0 |
|  2 |          2 |           3 |       2 |     1 |
|  3 |          2 |           3 |       1 |     1 |
|  4 |          3 |           3 |       1 |     1 |
|  5 |          4 |           3 |       1 |     0 |
|  6 |          7 |           4 |       1 |     1 |
|  7 |          6 |           4 |       1 |     0 |
|  9 |          8 |           5 |       2 |     1 |
+----+------------+-------------+---------+-------+

以下是查询:

SELECT businesses.id AS business_id, businesses.name AS business_name,     
  most_liked_picture.business_plan_type_id, most_liked_picture.picture_id, 
  businesses.lat, businesses.lng, most_liked_picture.image_path, 
  most_liked_picture.picture_title, most_liked_picture.lifetime_likes, 
  most_liked_picture.business_picture, 
  ST_Distance_Sphere(businesses.point_location, POINT(-81.581235, 28.417839)) AS  
  distance_from_user, 
  most_liked_picture.uploaded_username,   
  most_liked_picture.uploaded_user_image_path,   
  most_liked_picture.user_liked_picture 
FROM businesses LEFT JOIN 
     (SELECT most_liked_picture.id AS picture_id, businesses.id AS business_id, 
        businesses.name AS business_name, 
        current_business_plan.plan_type_id AS business_plan_type_id, 
        businesses.lat, businesses.lng, most_liked_picture.image_path, 
        title AS picture_title, most_liked_picture.lifetime_likes, 
        business_picture, 
        ST_Distance_Sphere(businesses.point_location, POINT(-81.581235,                  
          28.417839)) AS distance_from_user, 
        CASE business_picture 
          WHEN 0 THEN user_uploaded_picture.username 
          ELSE "" 
        END AS uploaded_username, 
        CASE business_picture 
          WHEN 0 THEN user_uploaded_picture.picture_path 
          ELSE "" 
        END AS uploaded_user_image_path, 
        IFNULL(current_user_liked_picture, NULL) AS user_liked_picture
      FROM users AS user_uploaded_picture RIGHT JOIN (
        (SELECT business_id, plan_type_id 
         FROM business_plans 
         WHERE (CURRENT_DATE() BETWEEN start_date AND end_date) OR 
               ((end_date IS NULL) AND (CURRENT_DATE >= start_date))
         ) AS current_business_plan 
       RIGHT JOIN (businesses LEFT JOIN ( 
         (SELECT picture_id, liked AS current_user_liked_picture 
          FROM user_picture_swipes 
          WHERE (user_id = 1)
         ) AS user_picture_swipe 
       RIGHT JOIN pictures AS most_liked_picture 
         ON user_picture_swipe.picture_id = most_liked_picture.id) 
         ON businesses.id = most_liked_picture.business_id) 
         ON current_business_plan.business_id = businesses.id) 
         ON user_uploaded_picture.id = most_liked_picture.user_id 
      WHERE ST_Within(businesses.point_location, 
        envelope(linestring(POINT(-81.581235 - 5 / 
        abs(cos(radians(28.417839)) * 69),28.417839 - (5 / 69)), 
        POINT(-81.581235 + 5 / abs(cos(radians(28.417839)) * 69),28.417839 + 
        (5 / 69))))) 
      ORDER BY 
        IF(IFNULL(current_business_plan.plan_type_id, 1) != 1, 
          IFNULL(most_liked_picture.business_picture, 0), 0) DESC, 
        lifetime_likes DESC            
      ) AS most_liked_picture ON businesses.id = most_liked_picture.business_id 
WHERE ST_Within(businesses.point_location, envelope(linestring(POINT(-81.581235 
  - 5 / abs(cos(radians(28.417839)) * 69),28.417839 - (5 / 69)),POINT(-81.581235 
  + 5 / abs(cos(radians(28.417839)) * 69),28.417839 + (5 / 69))))) 
ORDER BY ST_Distance_Sphere(businesses.point_location, POINT(-81.581235, 
  28.417839));

以下是我得到的结果(缩短为适合页面):

+-------------+--------------+--------------+-------+----------+---------------+
| business_id | name         | plan_type_id | likes | username | liked_picture |
+-------------+--------------+--------------+-------+----------+---------------+
|           4 | Disney World |         NULL |    20 |          |             0 |
|           4 | Disney World |         NULL |    45 | test     |             1 |
|           1 | test_business|            2 |       |     NULL |          NULL |
|           5 | business near|         NULL |    20 |          |          NULL |
+-------------+--------------+--------------+-------+----------+---------------+

我应该得到的结果:

+-------------+--------------+--------------+-------+----------+---------------+
| business_id | name         | plan_type_id | likes | username | liked_picture |
+-------------+--------------+--------------+-------+----------+---------------+
|           4 | Disney World |            2 |    20 | test     |             0 |
|           4 | Disney World |            2 |    45 | test     |             1 |
|           1 | test_business|            2 |       |     NULL |          NULL |
|           5 | business near|         NULL |    20 | username2|             1 |
+-------------+--------------+--------------+-------+----------+---------------+

对不起,这篇文章太长了。任何帮助表示赞赏。

*******************************更新查询************* ******************

我终于明白了!外部查询是罪魁祸首,一旦删除我得到了预期的结果。这是最后的查询(使用没有正确的连接,并且没有来自的块)。感谢Used_By_Already指向我正确的方向。

SELECT businesses.id AS business_id, businesses.name AS business_name, 
  current_business_plan.plan_type_id AS business_plan_type_id, businesses.lat, businesses.lng, 
  most_liked_picture.id AS picture_id, most_liked_picture.image_path, title AS picture_title, 
  most_liked_picture.lifetime_likes, business_picture, picture_uploaded_user.username AS uploaded_username, 
  picture_uploaded_user.picture_path AS uploaded_user_image_path, 
  user_picture_swipe.current_user_liked_picture AS user_liked_picture,  
  ST_Distance_Sphere(businesses.point_location, POINT(-81.581235, 28.417839)) AS distance_from_user 

FROM 
    (SELECT business_id, plan_type_id 
     FROM business_plans 
     WHERE (CURRENT_DATE() BETWEEN start_date AND end_date) OR  ((end_date IS NULL) AND 
       (CURRENT_DATE >= start_date))) AS current_business_plan 
  INNER JOIN businesses ON current_business_plan.business_id = businesses.id  
  LEFT JOIN pictures AS most_liked_picture ON businesses.id = most_liked_picture.business_id 
  LEFT JOIN users AS picture_uploaded_user ON most_liked_picture.user_id = picture_uploaded_user.id 
  LEFT JOIN 
    (SELECT picture_id, liked AS current_user_liked_picture 
     FROM user_picture_swipes 
     WHERE (user_id = 1)) AS user_picture_swipe ON most_liked_picture.id = user_picture_swipe.picture_id 

WHERE ((expire_date IS NULL) OR (CURRENT_DATE() <= expire_date)) AND 
  ST_Within(businesses.point_location, envelope(linestring(POINT(-81.581235 - 5 / abs(cos(radians(28.417839)) * 69),28.417839 - (5 / 69)), POINT(-81.581235 + 5 / abs(cos(radians(28.417839)) * 69),28.417839 + (5 / 69))))) 

ORDER BY 
  IF(IFNULL(current_business_plan.plan_type_id, 1) != 1, IFNULL(most_liked_picture.business_picture, 0), 0) DESC, 
  most_liked_picture.lifetime_likes DESC, 
  ST_Distance_Sphere(businesses.point_location, POINT(-81.581235, 28.417839)) 

现在,如果我能弄清楚如何只为每个企业返回1张图片。我尝试使用聚合MAX(most_liked_picture.lifetime_likes)和GROUP BY BUSINESS.id然而它删除了我的订单,所以我没有得到正确的图片。

1 个答案:

答案 0 :(得分:1)

This simple query

SELECT
      b.*
    , bp.business_id
    , bp.plan_type_id
    , p.likes
    , p.b_pic
    , u.username
    , u.picture_path
FROM business_plans AS bp
INNER JOIN businesses AS b ON bp.business_id = b.id
left join pictures AS p on b.id = p.id
left join users AS u on p.user_id = u.id
WHERE (CURRENT_DATE() BETWEEN bp.start_date AND bp.end_date)
     OR 
      (bp.end_date IS NULL AND CURRENT_DATE() >= bp.start_date)

产生如下结果:

id name            lat lng point_location business_id plan_type_id likes b_pic username  picture_path       
-- --------------- --- --- -------------- ----------- ------------ ----- ----- --------- ------------------ 
1  test_business_1 28  -82 null           1           1            5     1     test      user1_picture_Path 
1  test_business_1 28  -82 null           1           2            5     1     test      user1_picture_Path 
2  Sea_World       33  117 null           2           2            1     1     null      null               
3  Disneyland      34  118 null           3           1            5     0     username2 null               
4  Disney World    28  -82 null           4           2            20    1     null      null               

(5 row(s) returned)

(25 row(s) affected)

我建议你从头开始重启。

也许这是起点?但我确实不确定

SELECT b.*, bp.*
FROM business_plans AS bp
INNER JOIN businesses AS b on bp.business_id = b.id

-- sample data needs start_date or end_date

WHERE (CURRENT_DATE() BETWEEN start_date AND end_date) 
OR (end_date IS NULL AND CURRENT_DATE >= start_date)

还要确保您的测试数据满足where子句

CREATE TABLE businesses
    (`id` int, `name` varchar(26), `lat` numeric, `lng` numeric, `point_location` int)
;

INSERT INTO businesses
    (`id`, `name`, `lat`, `lng`, `point_location`)
VALUES
    (1, 'test_business_1', 28.418908, -81.586254, NULL),
    (2, 'Sea_World', 32.764800, 117.226600, NULL),
    (3, 'Disneyland', 33.812100, 117.919000, NULL),
    (4, 'Disney World', 28.417839, -81.581235, NULL),
    (5, 'business near Disney World', 28.408642, -81.572607, NULL)
;


CREATE TABLE business_plans
    (`id` int, `plan_type_id` int, `business_id` int)
;

INSERT INTO business_plans
    (`id`, `plan_type_id`, `business_id`)
VALUES
    (1, 1, 1),
    (2, 2, 1),
    (3, 2, 2),
    (4, 1, 3),
    (5, 2, 4)
;


CREATE TABLE pictures
    (`id` int, `business_id` int, `user_id` int, `lat` int, `lng` int, `point` int, `likes` int, `b_pic` int)
;

INSERT INTO pictures
    (`id`, `business_id`, `user_id`, `lat`, `lng`, `point`, `likes`, `b_pic`)
VALUES
    (1, 2, 1, 32.764800, 117.226600, NULL, 5, 1),
    (2, 3, 0, 33.812100, 117.919000, NULL, 1, 1),
    (3, 3, 2, 33.812100, 117.919000, NULL, 5, 0),
    (4, 3, 0, 33.812100, 117.919000, NULL, 20, 1),
    (5, 3, 2, 33.812100, 117.919000, NULL, 10, 1),
    (6, 4, 1, 28.417839, -81.581235, NULL, 20, 1),
    (7, 4, 1, 28.417839, -81.581235, NULL, 45, 0),
    (8, 5, 2, 28.417839, -81.581235, NULL, 20, 1)
;


CREATE TABLE users
    (`id` int, `username` varchar(9), `picture_path` varchar(18))
;

INSERT INTO users
    (`id`, `username`, `picture_path`)
VALUES
    (1, 'test', 'user1_picture_Path'),
    (2, 'username2', NULL),
    (3, 'username3', NULL),
    (4, 'username5', NULL),
    (5, 'username5', NULL),
    (6, 'username6', NULL),
    (7, 'username7', NULL)
;


CREATE TABLE user_picture_swipe
    (`id` int, `picture_id` int, `business_id` int, `user_id` int, `liked` int)
;

INSERT INTO user_picture_swipe
    (`id`, `picture_id`, `business_id`, `user_id`, `liked`)
VALUES
    (1, 1, 2, 2, 0),
    (2, 2, 3, 2, 1),
    (3, 2, 3, 1, 1),
    (4, 3, 3, 1, 1),
    (5, 4, 3, 1, 0),
    (6, 7, 4, 1, 1),
    (7, 6, 4, 1, 0),
    (9, 8, 5, 2, 1)
;