是非常新的pyspark,但对熊猫很熟悉。 我有一个pyspark数据框
# instantiate Spark
spark = SparkSession.builder.getOrCreate()
# make some test data
columns = ['id', 'dogs', 'cats']
vals = [
(1, 2, 0),
(2, 0, 1)
]
# create DataFrame
df = spark.createDataFrame(vals, columns)
希望添加新的行(4,5,7),以便输出:
df.show()
+---+----+----+
| id|dogs|cats|
+---+----+----+
| 1| 2| 0|
| 2| 0| 1|
| 4| 5| 7|
+---+----+----+
答案 0 :(得分:1)
正如thebluephantom所说的那样,联合是必经之路。我只是在回答您的问题,为您提供pyspark示例:
columns = ['id', 'dogs', 'cats']
vals = [(1, 2, 0), (2, 0, 1)]
df = spark.createDataFrame(vals, columns)
newRow = spark.createDataFrame([(4,5,7)], columns)
appended = df.union(newRow)
appended.show()
也请查看databricks常见问题解答:https://docs.databricks.com/spark/latest/faq/append-a-row-to-rdd-or-dataframe.html
答案 1 :(得分:0)
根据我所做的使用 union 的操作,显示了块部分编码-当然,您需要适应自己的情况:
val dummySchema = StructType(
StructField("phrase", StringType, true) :: Nil)
var dfPostsNGrams2 = spark.createDataFrame(sc.emptyRDD[Row], dummySchema)
for (i <- i_grams_Cols) {
val nameCol = col({i})
dfPostsNGrams2 = dfPostsNGrams2.union(dfPostsNGrams.select(explode({nameCol}).as("phrase")).toDF )
}
DF与自身的联合是要走的路。
答案 2 :(得分:0)
另一种替代方法是使用分区镶木地板格式,并为您要附加的每个数据帧添加一个额外的镶木地板文件。通过这种方式,您可以创建(数百、数千、数百万)parquet 文件,并且当您稍后阅读目录时,spark 会将它们作为联合读取。
这个例子使用了pyarrow
请注意,如果您已经知道要将单个 Parquet 文件放在哪里,我还展示了如何编写未分区的单个 Parquet (example.parquet)。
import pyarrow.parquet as pq
import pandas as pd
headers=['A', 'B', 'C']
row1 = ['a1', 'b1', 'c1']
row2 = ['a2', 'b2', 'c2']
df1 = pd.DataFrame([row1], columns=headers)
df2 = pd.DataFrame([row2], columns=headers)
df3 = df1.append(df2, ignore_index=True)
table = pa.Table.from_pandas(df3)
pq.write_table(table, 'example.parquet', flavor='spark')
pq.write_to_dataset(table, root_path="test_part_file", partition_cols=['B', 'C'], flavor='spark')
# Adding a new partition (B=b2/C=c3
row3 = ['a3', 'b3', 'c3']
df4 = pd.DataFrame([row3], columns=headers)
table2 = pa.Table.from_pandas(df4)
pq.write_to_dataset(table2, root_path="test_part_file", partition_cols=['B', 'C'], flavor='spark')
# Add another parquet file to the B=b2/C=c2 partition
# Note this does not overwrite existing partitions, it just appends a new .parquet file.
# If files already exist, then you will get a union result of the two (or multiple) files when you read the partition
row5 = ['a5', 'b2', 'c2']
df5 = pd.DataFrame([row5], columns=headers)
table3 = pa.Table.from_pandas(df5)
pq.write_to_dataset(table3, root_path="test_part_file", partition_cols=['B', 'C'], flavor='spark')
之后读取输出
from pyspark.sql import SparkSession
spark = (SparkSession
.builder
.appName("testing parquet read")
.getOrCreate())
df_spark = spark.read.parquet('test_part_file')
df_spark.show(25, False)
您应该会看到类似这样的内容
+---+---+---+
|A |B |C |
+---+---+---+
|a5 |b2 |c2 |
|a2 |b2 |c2 |
|a1 |b1 |c1 |
|a3 |b3 |c3 |
+---+---+---+
如果你再次端到端地运行同样的事情,你应该看到这样的重复(因为所有以前的镶木地板文件仍然存在,火花联合它们)。
+---+---+---+
|A |B |C |
+---+---+---+
|a2 |b2 |c2 |
|a5 |b2 |c2 |
|a5 |b2 |c2 |
|a2 |b2 |c2 |
|a1 |b1 |c1 |
|a1 |b1 |c1 |
|a3 |b3 |c3 |
|a3 |b3 |c3 |
+---+---+---+