eigen
函数:
set.seed(1)
# Variance and covariances of 4 variables
A1 <- rnorm(1000,10,1)
A2 <- rnorm(1000,10,1)
A3 <- rnorm(1000,10,1)
A4 <- rnorm(1000,10,1)
C12 <- rnorm(1000,0,1)
C13 <- rnorm(1000,0,1)
C14 <- rnorm(1000,0,1)
C23 <- rnorm(1000,0,1)
C24 <- rnorm(1000,0,1)
C34 <- rnorm(1000,0,1)
# Create posterior tibble
w1_post <- as_tibble(cbind(A1, C12, C13, C14, A2, C23, C24, A3, C34, A4))
# Get 1st-4th eigenvalues of each variance-covariance matrix
w1_post %>%
rowwise %>%
mutate(
eig1 =
eigen(matrix(c(A1, C12, C13, C14, C12, A2, C23, C24, C13, C23,
A3, C34, C14, C24, C34, A4), nrow = 4))[[1]][1],
eig2 =
eigen(matrix(c(A1, C12, C13, C14, C12, A2, C23, C24, C13, C23,
A3, C34, C14, C24, C34, A4), nrow = 4))[[1]][2],
eig3 =
eigen(matrix(c(A1, C12, C13, C14, C12, A2, C23, C24, C13, C23,
A3, C34, C14, C24, C34, A4), nrow = 4))[[1]][3],
eig4 =
eigen(matrix(c(A1, C12, C13, C14, C12, A2, C23, C24, C13, C23,
A3, C34, C14, C24, C34, A4), nrow = 4))[[1]][4]) %>%
select(starts_with('eig')) -> eig_post
生产
> eig_post
Source: local data frame [1,000 x 4]
Groups: <by row>
# A tibble: 1,000 x 4
eig1 eig2 eig3 eig4
<dbl> <dbl> <dbl> <dbl>
1 12.3 11.0 10.4 6.67
2 12.8 10.1 9.19 7.61
3 13.5 12.2 8.20 7.34
4 12.7 12.2 8.91 7.68
5 12.9 9.70 9.41 6.74
6 12.2 10.6 8.62 7.70
7 13.1 12.5 9.21 8.34
8 12.9 9.76 7.87 6.96
9 12.8 11.6 8.21 6.46
10 12.5 11.6 9.85 8.13
# ... with 990 more rows
如您所见,这每行执行本征分解四次-比实际需要多四倍,并且减慢了我的脚本的速度! 我可以一次使用dplyr / tidyverse管道来突变多个变量,将eigen(*matrix*)[[1]][1:4]
产生的向量分布在四个变量上吗?所以我需要得到上面代码产生的结果,但是每行进行一次本征分解。我以为这样的事情会奏效,但没有运气:
w1_post %>%
rowwise %>%
mutate(c(eig1, eig2, eig3, eig4) =
eigen(matrix(c(A1, C12, C13, C14, C12, A2, C23, C24, C13, C23,
A3, C34, C14, C24, C34, A4), nrow = 4))[[1]][1:4]) %>%
select(starts_with('eig')) -> eig_post
答案 0 :(得分:1)
通过先将计算结果存储为列表列,然后在后续步骤中仅提取值,可以避免计算4次本征分解。如果您希望将其保留在管道中,可以这样进行:
eig_post <- w1_post %>%
rowwise %>%
mutate(
pre_eig = list(eigen(matrix(c(A1, C12, C13, C14, C12, A2, C23, C24, C13, C23,
A3, C34, C14, C24, C34, A4), nrow = 4)))
) %>%
mutate(
eig1 = pre_eig[[1]][1],
eig2 = pre_eig[[1]][2],
eig3 = pre_eig[[1]][3],
eig4 = pre_eig[[1]][4]) %>%
select(starts_with("eig"))
答案 1 :(得分:1)
以下是使用purrr::map
系列函数的解决方案:
eig_post <- w1_post %>%
## Collapse columns into a vector
transmute( x = pmap( list(A1, C12, C13, C14, C12, A2, C23, C24, C13, C23,
A3, C34, C14, C24, C34, A4), c ) ) %>%
## Compose the 4x4 matrices from each vector
mutate( mtx = map( x, matrix, nrow=4 ) ) %>%
## Perform a single decomposition and retrieve all 4 eigenvalues
mutate( eig = map( mtx, ~eigen(.x)$values ) ) %>%
## Annotate the vector of eigenvalues with the desired names
mutate( eig = map( eig, set_names, str_c("eig", 1:4) ) ) %>%
## Reshape the data frame by effectively unnesting the vector
with( invoke( bind_rows, eig ) )