存在两个数据信息完全不同的数据帧。它们唯一的共同之处是日期时间和纬度/经度字段。是否可以使用R或R包(或可能的Python / Pandas)创建第三个数据框,该包从两个数据框中按相似的日期和经/纬度字段获取行的子集?连接应该是模糊的,而不是精确的,正负一小时和十分之一度。
输入示例:
df_1
Datetime Latitude Longitude
2018-10-01 08:27:10 34.8014080 103.8499800
2018-09-30 04:55:51 43.3367432 44.158934
2018-02-28 17:03:27 37.0399910 115.6672080
df_2
Datetime Latitude Longitude
2018-10-01 08:57:10 34.8014080 103.8999800
2018-09-30 04:55:51 43.3367432 48.158934
2018-02-27 17:03:27 37.0399910 115.6672080
输出示例:
fuzzy_geo_temporal_join(df_1, df_2, time = 60, lat = 0.01, long = 0.01)
df_3
df_1 Datetime df_1 Lat df_1 Long df_2 Datetime df_2 Lat df_2 Long
2018-10-01 08:27:10 34.8014080 103.8499800 2018-10-01 08:57:10 34.8014080 103.8999800
注意:在此示例中,第一个匹配并且被放置到新的数据框中。由于给出的模糊参数,第二个和第三个没有。
答案 0 :(得分:0)
这可能有效...
install.packages("fuzzyjoin")
library(fuzzyjoin)
close_dates <- difference_inner_join(df1, df2, by = "Datetime", max_dist = 60)
close_lats <- difference_inner_join(close_dates, df2, by = "Latitude", max_dist = 0.01)
df3 <- difference_inner_join(close_lats, df2, by = "Longitude", max_dist = 0.01)
答案 1 :(得分:0)
这听起来像是使用data.table
进行非等额加入的工作!
library( data.table )
样本数据
dt1 <- fread( "Datetime, Latitude, Longitude
2018-10-01 08:27:10, 34.8014080, 103.8499800
2018-09-30 04:55:51, 43.3367432, 44.158934
2018-02-28 17:03:27, 37.0399910, 115.6672080", header = T)
dt2 <- fread("Datetime, Latitude, Longitude
2018-10-01 08:57:10, 34.8014080, 103.8999800
2018-09-30 04:55:51, 43.3367432, 48.158934
2018-02-27 17:03:27, 37.0399910, 115.6672080", header = T)
数据准备
#set datetimes to POSIXct
dt1[, Datetime := as.POSIXct( Datetime, format = "%Y-%m-%d %H:%M:%S") ]
dt2[, `:=`(Datetime = as.POSIXct( Datetime, format = "%Y-%m-%d %H:%M:%S" ) )]
加入
#create boundaries
dt2[, `:=`(Datetime_max = Datetime + 3600,
Datetime_min = Datetime - 3600,
Latitude_max = Latitude + 0.1,
Latitude_min = Latitude - 0.1,
Longitude_max = Longitude + 0.1,
Longitude_min = Longitude - 0.1) ]
#perform non-equi join
dt1[ dt2, on = .( Datetime <= Datetime_max,
Datetime >= Datetime_min,
Latitude <= Latitude_max,
Latitude >= Latitude_min,
Longitude <= Longitude_max,
Longitude >= Longitude_min ),
nomatch = 0L]
结果
# Datetime Latitude Longitude Datetime.1 Latitude.1 Longitude.1 i.Datetime i.Latitude i.Longitude
# 1: 2018-10-01 09:57:10 34.90141 104 2018-10-01 07:57:10 34.70141 103.8 2018-10-01 08:57:10 34.80141 103.9