我有一个熊猫数据框,其中包含我要格式化的费用列。基本上,替换字符串并将其标准化是因为成本值是从不同来源获取的。还有一些'NaN'。
以下是一些示例数据:
$2.75
nan
4.150000
25.00
$4.50
我有以下代码用于标准化列中的值格式。
for i in range(len(EmpComm['Cost(USD)'])):
if (pd.isnull(EmpComm['Cost(USD)'][i])):
print(EmpComm['Cost(USD)'][i], i)
#EmpComm['Cost(USD)'] = EmpComm['Cost(USD)'].iloc[i].fillna(0, inplace=True)
if type(EmpComm['Cost(USD)'].iloc[i]) == str:
#print('string', i)
EmpComm['Cost(USD)'] = EmpComm['Cost(USD)'].iloc[i].replace('$','')
输出:
0 2.75
1 2.75
2 2.75
3 2.75
4 2.75
5 2.75
所有值均置于2.75。由于所有列值都被格式化为字符串,因此它正在运行第二个if语句。
我的问题是:您将如何格式化?
答案 0 :(得分:2)
通常,您应该避免手动进行for
循环,并在可能的情况下对Pandas使用矢量化功能。在这里,您可以利用pd.to_numeric
来测试和转换系列中的值:
s = pd.Series(['$2.75', np.nan, 4.150000, 25.00, '$4.50'])
strs = s.astype(str).str.replace('$', '', regex=False)
res = pd.to_numeric(strs, errors='coerce').fillna(0)
print(res)
0 2.75
1 0.00
2 4.15
3 25.00
4 4.50
dtype: float64