我有一个由8个微分方程组成的系统,我正在尝试使用R中的deSolve
进行求解。
它仅在前几个步骤后返回NaN
,并且不会进一步解决。
我尝试了各种微分求解器,例如lsoda
(默认),bdf
,adams
,rk4
等,但没有帮助。
这是示例R代码:
library(deSolve)
daero = c(5.29,4.16,2.49,1.53,0.7,0.41,0.21)*10^-4
rho = rep(1.27,7)
dgeo = daero * sqrt(1/rho)
r0 = dgeo/2
Fr = c(0.188,0.297,0.274,0.181,0.032,0.013,0.015)
X0 = Fr*200*10^-6
N0 = X0*(3/(4*3.14*r0^3*rho))
func1 <- function(t,state,parameters){
with(as.list(c(state,parameters)),{
dX1 = -D/((3*X1/(4*3.14*rho[1]*N0[1]))^(1/3))*(N0[1]*4*3.14*
((3*X1/(4*3.14*rho[1]*N0[1]))^(1/3))^2)*(Cs-S/V)
dX2 = -D/((3*X2/(4*3.14*rho[2]*N0[2]))^(1/3))*(N0[2]*4*3.14*
((3*X2/(4*3.14*rho[2]*N0[2]))^(1/3))^2)*(Cs-S/V)
dX3 = -D/((3*X3/(4*3.14*rho[3]*N0[3]))^(1/3))*(N0[3]*4*3.14*
((3*X3/(4*3.14*rho[3]*N0[3]))^(1/3))^2)*(Cs-S/V)
dX4 = -D/((3*X4/(4*3.14*rho[4]*N0[4]))^(1/3))*(N0[4]*4*3.14*
((3*X4/(4*3.14*rho[4]*N0[4]))^(1/3))^2)*(Cs-S/V)
dX5 = -D/((3*X5/(4*3.14*rho[5]*N0[5]))^(1/3))*(N0[5]*4*3.14*
((3*X5/(4*3.14*rho[5]*N0[5]))^(1/3))^2)*(Cs-S/V)
dX6 = -D/((3*X6/(4*3.14*rho[6]*N0[6]))^(1/3))*(N0[6]*4*3.14*
((3*X6/(4*3.14*rho[6]*N0[6]))^(1/3))^2)*(Cs-S/V)
dX7 = -D/((3*X7/(4*3.14*rho[7]*N0[7]))^(1/3))*(N0[7]*4*3.14*
((3*X7/(4*3.14*rho[7]*N0[7]))^(1/3))^2)*(Cs-S/V)
dS = -dX1-dX2-dX3-dX4-dX5-dX6-dX7
list(c(dX1,dX2,dX3,dX4,dX5,dX6,dX7,dS))
})
}
state <- c(X1=X0[1],X2=X0[2],X3=X0[3],X4=X0[4],X5=X0[5],
X6=X0[6],X7=X0[7],S=0)
parameters <- c(D=6.19*60*10^-6,rho=rho,N=N0,Cs=17*10^-6,V=1000)
times <- seq(0,3,by=0.0005)
out <- ode(y = state, times = times,func = func1, parms = parameters)
Output:
> out[1:20,]
time X1 X2 X3 X4
0.0000 3.760000e-05 5.940000e-05 5.480000e-05 3.620000e-05
0.0005 3.759491e-05 5.938700e-05 5.476652e-05 3.614143e-05
0.0010 3.758982e-05 5.937400e-05 5.473305e-05 3.608290e-05
0.0015 3.758473e-05 5.936100e-05 5.469959e-05 3.602440e-05
0.0020 3.757964e-05 5.934800e-05 5.466613e-05 3.596594e-05
0.0025 3.757455e-05 5.933500e-05 5.463268e-05 3.590750e-05
0.0030 3.756947e-05 5.932201e-05 5.459924e-05 3.584910e-05
0.0035 3.756438e-05 5.930901e-05 5.456581e-05 3.579074e-05
0.0040 3.755929e-05 5.929602e-05 5.453238e-05 3.573240e-05
0.0045 3.755420e-05 5.928303e-05 5.449897e-05 3.567410e-05
0.0050 3.754912e-05 5.927004e-05 5.446556e-05 3.561583e-05
0.0055 3.754403e-05 5.925705e-05 5.443215e-05 3.555760e-05
0.0060 3.753895e-05 5.924406e-05 5.439876e-05 3.549940e-05
0.0065 3.753386e-05 5.923107e-05 5.436537e-05 3.544123e-05
0.0070 3.752878e-05 5.921808e-05 5.433199e-05 3.538310e-05
0.0075 3.752369e-05 5.920510e-05 5.429862e-05 3.532499e-05
0.0080 3.751861e-05 5.919212e-05 5.426525e-05 3.526692e-05
0.0085 3.751352e-05 5.917913e-05 5.423190e-05 3.520889e-05
0.0090 NaN NaN NaN NaN
0.0095 NaN NaN NaN NaN
我希望至少解决X,直到X减少到初始值的1%。但是,我在仿真中发现NaN
值还为时过早。我尝试将时间步长更改为低至0.0005和高0.5 hr,但仍然遇到相同的问题。
答案 0 :(得分:1)
这些问题可能很难诊断,但是我从重构您的功能开始-也就是说,我简化了胆量,并确保它给出了足够接近的答案(使用{{1} })。
all.equal()
(== tmp3^2/tmp3
)tmp3
测试和if(any(is.na(grad)))
调用,这样我们就可以在第一个browser()
值出现时停止并查看发生了什么事情……NA/NaN
现在尝试运行
func2 <- function(t,state,parameters, debug=TRUE){
n <- length(state)
v <- 1:(n-1)
grad <- rep(NA,n)
tmp1 <- (4*3.14*rho[v]*N0[v])
tmp2 <- 3*state[v]/tmp1
tmp3 <- tmp2^(1/3)
grad[v] <- with(as.list(c(state,parameters)),{
-D*(N0[v]*4*3.14*tmp3)*(Cs-S/V)
})
grad[n] <- -sum(grad[v])
if (debug && any(is.na(grad))) browser()
return(list(grad))
}
## test near-equality
all.equal(func1(0,state, parameters),func2(0,state, parameters)) ## TRUE
这使我们进入了交互式浏览器环境。
第一个中间表达式看起来不错(大但有限):
out <- ode(y = state, times = times,func = func2, parms = parameters)
第二个表达式(Browse[2]> tmp1
[1] 8724442 28341529 121926846 347177124 640918307 1295801866
[7] 11127053948
)看起来不错,但是请注意最后一个值是负数-这大概是因为最后一个(第七个)状态变量略有负数。
3*state[v]/tmp1
现在,当我们尝试求立方根时,情况会变糟:除非将值定义为 Browse[2]> tmp2
X1 X2 X3 X4 X5
1.289771e-11 6.262837e-12 1.333549e-12 3.037421e-13 2.588684e-14
X6 X7
3.751315e-15 -4.992697e-18
类型,否则R中的负数的小数幂为complex
NaN
这将迅速传播并弄乱整个状态。
在这一点上,我们可以尝试向后追溯一点,并尝试了解首先导致负值的浮点误差;但是,以使表达式足够稳定的方式重写表达式可能会或可能不容易(甚至不可能)。 This question和this question讨论了将ODE解约束为非负值的方法...最简单的方法(如果对您的问题有意义)是放入Browse[2]> tmp3
X1 X2 X3 X4 X5 X6
2.345151e-04 1.843276e-04 1.100702e-04 6.722049e-05 2.958192e-05 1.553798e-05
X7
NaN
或{{ 1}}调用以防止出现负值...
次要评论:
pmax(tmp3,0)
值... pmax(tmp3,very_small_positive_number)
似乎是随时间变化的常数。您可能需要在梯度函数之外进行预计算以提高效率... 要查看发生了什么,我按照您的建议将pi
添加到了总数中。我切换到tmp1
;这样效率较低,但比较简单,因为它在梯度计算之间很少进行中间计算。
na.rm=TRUE
这表明一个接一个的组件降到很小的值(在我们尝试取负值的立方根之后变成method="euler"
……) >可以安全地将值为out <- ode(y = state, times = times,func = func2, parms = parameters,
debug=FALSE,method="euler")
out <- out[rowSums(is.na(out))<9,]
png("SO_ode.png")
par(las=1)
matplot(out[,-1],type="l",lty=1,log="xy",col=1:8,
xlab="time",ylab="")
dev.off()
的渐变设置为零...