具有多项式内核的Kernel Ridge(来自sklearn.kernel_ridge)与使用PolynomialFeatures + Ridge(来自sklearn.linear_model)有什么区别?
答案 0 :(得分:0)
区别在于特征计算。 PolynomialFeatures
显式计算输入特征之间的多项式组合,直至达到所需的程度,而KernelRidge(kernel='poly')
仅考虑将根据原始特征表示的多项式内核(a polynomial representation of feature dot products)。 This document总体上提供了很好的概述。
关于计算,我们可以检查源代码中的相关部分:
(训练)内核的计算遵循相似的过程:比较Ridge
和KernelRidge
。主要区别在于Ridge
明确考虑了它收到的任何(多项式)特征之间的点积,而对于KernelRidge
,这些多项式特征是generated implicitly during the computation。例如,考虑单个功能x
;通过gamma = coef0 = 1
,KernelRidge
计算出(x**2 + 1)**2 == (x**4 + 2*x**2 + 1)
。如果现在考虑使用PolynomialFeatures
,它将提供功能x**2, x, 1
,并且相应的点积为x**4 + x**2 + 1
。因此,点积相差x**2
。当然,我们可以重新调整多要素的比例以使其具有x**2, sqrt(2)*x, 1
,而使用KernelRidge(kernel='poly')
则没有这种灵活性。另一方面,差异可能并不重要(在大多数情况下)。
请注意,对偶系数的计算也以类似的方式执行:Ridge
和KernelRidge
。最终KernelRidge
保留对偶系数,而Ridge
直接计算权重。
让我们看一个小例子:
import matplotlib.pyplot as plt
import numpy as np
from sklearn.linear_model import Ridge
from sklearn.kernel_ridge import KernelRidge
from sklearn.preprocessing import PolynomialFeatures
from sklearn.utils.extmath import safe_sparse_dot
np.random.seed(20181001)
a, b = 1, 4
x = np.linspace(0, 2, 100).reshape(-1, 1)
y = a*x**2 + b*x + np.random.normal(scale=0.2, size=(100,1))
poly = PolynomialFeatures(degree=2, include_bias=True)
xp = poly.fit_transform(x)
print('We can see that the new features are now [1, x, x**2]:')
print(f'xp.shape: {xp.shape}')
print(f'xp[-5:]:\n{xp[-5:]}', end='\n\n')
# Scale the `x` columns so we obtain similar results.
xp[:, 1] *= np.sqrt(2)
ridge = Ridge(alpha=0, fit_intercept=False, solver='cholesky')
ridge.fit(xp, y)
krr = KernelRidge(alpha=0, kernel='poly', degree=2, gamma=1, coef0=1)
krr.fit(x, y)
# Let's try to reproduce some of the involved steps for the different models.
ridge_K = safe_sparse_dot(xp, xp.T)
krr_K = krr._get_kernel(x)
print('The computed kernels are (alomst) similar:')
print(f'Max. kernel difference: {np.abs(ridge_K - krr_K).max()}', end='\n\n')
print('Predictions slightly differ though:')
print(f'Max. difference: {np.abs(krr.predict(x) - ridge.predict(xp)).max()}', end='\n\n')
# Let's see if the fit changes if we provide `x**2, x, 1` instead of `x**2, sqrt(2)*x, 1`.
xp_2 = xp.copy()
xp_2[:, 1] /= np.sqrt(2)
ridge_2 = Ridge(alpha=0, fit_intercept=False, solver='cholesky')
ridge_2.fit(xp_2, y)
print('Using features "[x**2, x, 1]" instead of "[x**2, sqrt(2)*x, 1]" predictions are (almost) the same:')
print(f'Max. difference: {np.abs(ridge_2.predict(xp_2) - ridge.predict(xp)).max()}', end='\n\n')
print('Interpretability of the coefficients changes though:')
print(f'ridge.coef_[1:]: {ridge.coef_[0, 1:]}, ridge_2.coef_[1:]: {ridge_2.coef_[0, 1:]}')
print(f'ridge.coef_[1]*sqrt(2): {ridge.coef_[0, 1]*np.sqrt(2)}')
print(f'Compare with: a, b = ({a}, {b})')
plt.plot(x.ravel(), y.ravel(), 'o', color='skyblue', label='Data')
plt.plot(x.ravel(), ridge.predict(xp).ravel(), '-', label='Ridge', lw=3)
plt.plot(x.ravel(), krr.predict(x).ravel(), '--', label='KRR', lw=3)
plt.grid()
plt.legend()
plt.show()
我们从中获得:
We can see that the new features are now [x, x**2]:
xp.shape: (100, 3)
xp[-5:]:
[[1. 1.91919192 3.68329762]
[1. 1.93939394 3.76124885]
[1. 1.95959596 3.84001632]
[1. 1.97979798 3.91960004]
[1. 2. 4. ]]
The computed kernels are (alomst) similar:
Max. kernel difference: 1.0658141036401503e-14
Predictions slightly differ though:
Max. difference: 0.04244651134471766
Using features "[x**2, x, 1]" instead of "[x**2, sqrt(2)*x, 1]" predictions are (almost) the same:
Max. difference: 7.15642822779472e-14
Interpretability of the coefficients changes though:
ridge.coef_[1:]: [2.73232239 1.08868872], ridge_2.coef_[1:]: [3.86408737 1.08868872]
ridge.coef_[1]*sqrt(2): 3.86408737392841
Compare with: a, b = (1, 4)
答案 1 :(得分:0)
这是显示它的示例:
from sklearn.datasets import make_friedman1
plt.figure()
plt.title('Complex regression problem with one input variable')
X_F1, y_F1 = make_friedman1(n_samples = 100,
n_features = 7, random_state=0)
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.preprocessing import PolynomialFeatures
print('\nNow we transform the original input data to add\n\
polynomial features up to degree 2 (quadratic)\n')
poly = PolynomialFeatures(degree=2)
X_F1_poly = poly.fit_transform(X_F1)
X_train, X_test, y_train, y_test = train_test_split(X_F1_poly, y_F1,
random_state = 0)
linreg = Ridge().fit(X_train, y_train)
print('(poly deg 2 + ridge) linear model coeff (w):\n{}'
.format(linreg.coef_))
print('(poly deg 2 + ridge) linear model intercept (b): {:.3f}'
.format(linreg.intercept_))
print('(poly deg 2 + ridge) R-squared score (training): {:.3f}'
.format(linreg.score(X_train, y_train)))
print('(poly deg 2 + ridge) R-squared score (test): {:.3f}'
.format(linreg.score(X_test, y_test)))
(poly deg 2 + ridge) linear model coeff (w): [ 0. 2.23 4.73 -3.15 3.86 1.61 -0.77 -0.15 -1.75 1.6 1.37 2.52 2.72 0.49 -1.94 -1.63 1.51 0.89 0.26 2.05 -1.93 3.62 -0.72 0.63 -3.16 1.29 3.55 1.73 0.94 -0.51 1.7 -1.98 1.81 -0.22 2.88 -0.89] (poly deg 2 + ridge) linear model intercept (b): 5.418 (poly deg 2 + ridge) R-squared score (training): 0.826 (poly deg 2 + ridge) R-squared score (test): 0.825
答案 2 :(得分:0)
我假设您已经知道内核岭回归(KRR)和PolynomialFeatures
+ Ridge
的工作原理。它们有些相同。我将列出它们之间的一些镜像差异。
您可以在PolynomialFeatures
中关闭偏见功能,并将其包括在Ridge
中。 Ridge的正则化项不包括偏差。相反,对于sklearn的KRR,惩罚项始终包括偏差项。
在使用Ridge之前,您可以缩放PolynomialFeatures
生成的特征。等于为每个多项式特征自定义正则化强度。因此PolynomialFeatures
= Ridge
更具灵活性。相反,在多项式内核中只有两个参数需要调整,即gamma和c_0,请参见polynomial kernel。
拟合和预测时间不同。您需要解决KRR中的线性方程组K_NxN x = y $。您只需要求解线性方程组A_Nx(D + 1)x = y $,其中N是训练中的样本数,D是多项式的度。
(这是一个非常极端的情况),如果两个样本(在附近)相同,则内核将(几乎)是单数。并且当alpha(正则化强度)很小时。您将遇到数值稳定性问题。因为K + alpha * I几乎是奇数。您只能使用Ridge
来解决此问题。许多机器学习教科书中都说明了Ridge
起作用的原因。