我正在使用Keras,但出现此错误。我该如何解决?
这是我的代码:
cbow_words = Sequential()
cbow_words.add(Embedding(input_dim=V1, output_dim=dim, input_length=window_size*2 ,embeddings_constraint=non_neg()))#modifié
cbow_words.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=(dim,)))
cbow_words.add(Dense(V1, activation='softmax'))
cbow_texts = Sequential()
cbow_texts.add(Embedding(input_dim=V2, output_dim=dim, input_length=1,embeddings_constraint=non_neg()))
cbow_texts.add(Lambda(lambda x: K.mean(x, axis=1), output_shape=(dim,)))
cbow_texts.add(Dense(V2, activation='softmax'))
cbow=Concatenate([cbow_words,cbow_texts])
cbow.compile(loss=loss, optimizer=optimizers.Adadelta(lr=lr, rho=0.95, epsilon=None, decay=0.0))
我遇到了这个问题:
-------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-40-b94a3567fc00> in <module>()
11 cbow=Concatenate([cbow_words,cbow_texts])
12
---> 13 cbow.compile(loss=loss, optimizer=optimizers.Adadelta(lr=lr, rho=0.95, epsilon=None, decay=0.0))
AttributeError: 'Concatenate' object has no attribute 'compile'
答案 0 :(得分:1)
您正在将Sequential
模型与功能组件混合在一起。 Concatenate
将张量作为输入,而不是Sequential
模型。
由于有两个输入,因此建议您使用functional API,在您的情况下,它会导致结构大致如下:
from keras.models import Model
from keras.layers import Input, Dense, concatenate
words_in = Input((10,))
words = Dense(10, activation='softmax')(words_in)
texts_in = Input((10,))
texts = Dense(10, activation='softmax')(texts_in)
concat = concatenate([words, texts])
cbow = Model(inputs=[words_in, texts_in], output=concat)
cbow.compile(loss="categorical_crossentropy", optimizer="adagrad")