我已经使用retrain.py创建了分类模型。然后,我将模型部署到Google ml引擎中。它给出了以下错误
创建版本失败。模型验证失败:输出的外部尺寸必须未知,“ Const:0”的外部尺寸为12。有关如何导出Tensorflow SavedModel的更多信息,请参见https://www.tensorflow.org/api_docs/python/tf/saved_model。 StackOverflow建议更改输出张量尺寸
def export_model(sess,keys, architecture, saved_model_dir):
print("reached export funct")
if architecture == 'inception_v3':
input_tensor = 'DecodeJpeg/contents:0'
elif architecture.startswith('mobilenet_'):
input_tensor = 'input:0'
else:
raise ValueError('Unknown architecture', architecture)
in_image = sess.graph.get_tensor_by_name(input_tensor)
inputs = {'image': tf.saved_model.utils.build_tensor_info(in_image)}
out_classes = sess.graph.get_tensor_by_name('final_result:0')
outputs = {'prediction':
tf.saved_model.utils.build_tensor_info(out_classes),
'classes':
tf.saved_model.utils.build_tensor_info(tf.convert_to_tensor(list(keys))),}
signature = tf.saved_model.signature_def_utils.build_signature_def(
inputs=inputs,
outputs=outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
)
print(
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY)
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
# Save out the SavedModel.
builder = tf.saved_model.builder.SavedModelBuilder(saved_model_dir)
builder.add_meta_graph_and_variables(
sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
signature
},
legacy_init_op=legacy_init_op)
builder.save()