Google Cloud ML:输出的外部维度必须是未知的

时间:2017-10-04 06:02:54

标签: python machine-learning tensorflow google-cloud-ml

我们在本地获得了一个正在运行的导出模型,该模型正在以 Google Cloud ML 创建新模型版本,如下所示:



Create Version failed. Model validation failed: Outer dimension for outputs must be unknown, outer dimension of 'Const_2:0' is 1 For more information on how to export Tensorflow SavedModel, seehttps://www.tensorflow.org/api_docs/python/tf/saved_model.




我们当前的导出模型响应在tensorflow-servegcloud predict local中有效:



outputs {
  key: "categories"
  value {
    dtype: DT_STRING
    tensor_shape {
      dim {
        size: 1
      }
      dim {
        size: 17
      }
    }
    string_val: "Business Essentials"
    string_val: "Business Skills"
    string_val: "Communication"
    string_val: "Customer Service"
    string_val: "Desktop Computing"
    string_val: "Finance"
    string_val: "Health & Wellness"
    string_val: "Human Resources"
    string_val: "Information Technology"
    string_val: "Leadership"
    string_val: "Management"
    string_val: "Marketing & Advertising"
    string_val: "Personal Development"
    string_val: "Project Management"
    string_val: "Sales"
    string_val: "Technical Skills"
    string_val: "Training & Development"
  }
}
outputs {
  key: "category"
  value {
    dtype: DT_STRING
    tensor_shape {
      dim {
        size: 1
      }
    }
    string_val: "Training & Development"
  }
}
outputs {
  key: "class"
  value {
    dtype: DT_INT64
    tensor_shape {
      dim {
        size: 1
      }
    }
    int64_val: 16
  }
}
outputs {
  key: "prob"
  value {
    dtype: DT_FLOAT
    tensor_shape {
      dim {
        size: 1
      }
      dim {
        size: 17
      }
    }
    float_val: 0.051308773458
    float_val: 2.39087748923e-05
    float_val: 4.77133402232e-11
    float_val: 0.00015225057723
    float_val: 0.201782479882
    float_val: 2.11781745287e-17
    float_val: 3.61836161034e-09
    float_val: 0.104659214616
    float_val: 6.55719213682e-06
    float_val: 1.16744895001e-12
    float_val: 1.68323947491e-06
    float_val: 0.00510392058641
    float_val: 3.46840134738e-12
    float_val: 1.02085353504e-08
    float_val: 0.000151587591972
    float_val: 3.04983092289e-25
    float_val: 0.636809647083
  }
}




问题必须在类别中,因为输出的第一个工作版本中已存在所有其他输出。

任何想法??

2 个答案:

答案 0 :(得分:1)

回应我自己的问题:

我需要使用我需要的形状的现有张量之一来创建基于它们的[?, len(CATEGORIES)]张量。

为此,我们需要张量[?]作为tf.argmax(logits, 1)tf.till使用categories_tensor而张量[?, len(CATEGORIES)]使用tf.reshape结果就是这样。所以

CATEGORIES # => ['dog', 'elephant']
n_classes = len(CATEGORIES) # => 2
categories_tensor = tf.constant(CATEGORIES) # => Shape [2]
pob_tensor = tf.nn.softmax(logits) 
# => Shape [?, 2] being ? the number of inputs to predict
class_tensor = tf.argmax(logits, 1) 
# => Shape [?, 1]

tiled_categories_tensor = tf.tile(categories_tensor, tf.shape(class_tensor)) # => Shape [2*?] 
# => ['dog', 'elephant', 'dog', 'elephant', ... (? times) , 'dog', 'elephant' ]
categories = tf.reshape(tiled_categories_tensor, tf.shape(prob_tensor)) # => Shape [?, 2] 
# => [['dog', 'elephant'], ['dog', 'elephant'], ... (? times) , ['dog', 'elephant'] ]

predictions_dict = {
      'category': tf.gather(CATEGORIES, tf.argmax(logits, 1)),
      'class': class_tensor,
      'prob': prob_tensor,
      'categories': categories
    }

希望对面临此问题的任何人都有帮助

答案 1 :(得分:0)

我认为您需要构建图形,以便每个输入的第一个维度都是未知的,以便您可以支持批处理。我想你可以通过将形状中的大小设置为None来实现;见question