我正在努力使一些稀疏矩阵运算在Tensorflow中工作。我要解决的第一个问题是通过稀疏的Cholesky分解的稀疏行列式。 Eigen的Cholesky稀疏,所以我想把它包起来。
我一直在进步,但是现在有点卡住了。我知道Tensorflow中的SparseTensors由三部分组成:indices
,values
和shape
。复制类似的操作,我去了下面的REGISTER_OP
声明:
REGISTER_OP("SparseLogDet")
.Input("a_indices: int64")
.Input("a_values: float32")
.Input("a_shape: int64")
.Output("determinant: float32")
.SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
shape_inference::ShapeHandle h;
c->set_output(0, h);
return Status::OK();
});
这可以很好地编译,但是当我使用一些示例代码运行它时:
import tensorflow as tf
log_det_op = tf.load_op_library('./sparse_log_det_op.so')
with tf.Session(''):
t = tf.SparseTensor(indices=[[0, 0], [1, 2]], values=[1, 2],
dense_shape=[3, 4])
print(log_det_op.sparse_log_det(t).eval().shape)
print(log_det_op.sparse_log_det(t).eval())
它抱怨说:
TypeError: sparse_log_det() missing 2 required positional arguments: 'a_values' and 'a_shape'
这对我来说很有意义,因为它期待着其他论点。但是,我真的很想传递稀疏张量,而不是将其分解为分量!有谁知道如何处理其他稀疏操作?
谢谢!
答案 0 :(得分:1)
如果要传递稀疏张量,然后从中确定indices
,values
和shape
,则应该可行。只需修改您的OP即可接受单个Tensor
输入,并产生单个float
输出。然后通过遍历其元素,从Eigen :: Tensor中提取所需的信息,如下所示:
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow/core/framework/op_kernel.h"
#include <Eigen/Dense>
using namespace tensorflow;
REGISTER_OP("SparseDeterminant")
.Input("sparse_tensor: float")
.Output("sparse_determinant: float");
class SparseDeterminantOp : public OpKernel {
public:
explicit SparseDeterminantOp(OpKernelConstruction *context) : OpKernel(context) {}
void Compute(OpKernelContext *context) override {
// get the input tesnorflow tensor
const Tensor& sparse_tensor = context->input(0);
// get shape of input
const TensorShape& sparse_shape = sparse_tensor.shape();
// get Eigen Tensor for input tensor
auto eigen_sparse = sparse_tensor.matrix<float>();
//extract the data you want from the sparse tensor input
auto a_shape = sparse_tensor.shape();
// loop over all elements of the input tensor and add to values and indices
for (int i=0; i<a_shape.dim_size(0); ++i){
for (int j=0; j<a_shape.dim_size(1); ++j){
if(eigen_sparse(i,j) != 0){
/// ***Here add non zero elements to list/tensor of values and their indicies***
std::cout<<eigen_sparse(i,j)<<" at"<<" "<<i<<" "<<j<<" "<<"not zero."<<std::endl;
}
}
}
// create output tensor
Tensor *output_tensor = NULL;
TensorShape output_shape;
OP_REQUIRES_OK(context, context->allocate_output(0, output_shape, &output_tensor));
auto output = output_tensor->scalar<float>();
output(0) = 1.; //**asign return value***;
}
};
REGISTER_KERNEL_BUILDER(Name("SparseDeterminant").Device(DEVICE_CPU), SparseDeterminantOp);
不幸的是,当您将t
传递到op中时,它变成了Tensorflow::Tensor
,并且丢失了与values
相关联的indices
和tf.sparsetensor
方法,因此您可以不要轻易得到它们。
一旦编译后,此代码即可运行:
//run.py
import tensorflow as tf
import numpy as np
my_module = tf.load_op_library('./out.so')
# create sparse matrix
a = np.zeros((10,10))
for i in range(len(a)):
a[i,i] = i
print(a)
a_t = tf.convert_to_tensor(a, dtype= float)
with tf.Session() as sess:
sess.run(my_module.sparse_determinant(a_t))