我正在尝试在this文档之后松散地向TensorFlow添加新操作。不同之处在于我正在尝试实现基于GPU的操作。我试图添加的是来自here的cuda op(cuda_op.py,cuda_op_kernel.cc,cuda_op_kernel.cu.cc)。我正在尝试在tensorflow之外编译这些并使用tf.load_op_library
来引入它们。我做了一些更改,所以这里是我的文件:
cuda_op_kernel.cc
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"
#include "tensorflow/core/framework/op_kernel.h"
using namespace tensorflow; // NOLINT(build/namespaces)
REGISTER_OP("AddOne")
.Input("input: int32")
.Output("output: int32")
.SetShapeFn([](::tensorflow::shape_inference::InferenceContext* c) {
c->set_output(0, c->input(0));
return Status::OK();
});
void AddOneKernelLauncher(const int* in, const int N, int* out);
class AddOneOp : public OpKernel {
public:
explicit AddOneOp(OpKernelConstruction* context) : OpKernel(context) {}
void Compute(OpKernelContext* context) override {
// Grab the input tensor
const Tensor& input_tensor = context->input(0);
auto input = input_tensor.flat<int32>();
// Create an output tensor
Tensor* output_tensor = NULL;
OP_REQUIRES_OK(context, context->allocate_output(0, input_tensor.shape(),
&output_tensor));
auto output = output_tensor->template flat<int32>();
// Set all but the first element of the output tensor to 0.
const int N = input.size();
// Call the cuda kernel launcher
AddOneKernelLauncher(input.data(), N, output.data());
}
};
REGISTER_KERNEL_BUILDER(Name("AddOne").Device(DEVICE_GPU), AddOneOp);
cuda_op_kernel.cu
#define EIGEN_USE_GPU
#include <cuda.h>
#include <stdio.h>
__global__ void AddOneKernel(const int* in, const int N, int* out) {
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < N;
i += blockDim.x * gridDim.x) {
out[i] = in[i] + 1;
}
}
void AddOneKernelLauncher(const int* in, const int N, int* out) {
AddOneKernel<<<32, 256>>>(in, N, out);
cudaError_t cudaerr = cudaDeviceSynchronize();
if (cudaerr != cudaSuccess)
printf("kernel launch failed with error \"%s\".\n", cudaGetErrorString(cudaerr));
}
的CMakeLists.txt
cmake_minimum_required(VERSION 3.5)
#found from running python -c 'import tensorflow as tf; print(tf.sysconfig.get_include())'
include_directories(/usr/local/lib/python3.5/dist-packages/tensorflow/include)
find_package(CUDA)
#set flags based on tutorial
set (CMAKE_CXX_FLAGS "--std=c++11 -fPIC -O2 -D_GLIBCXX_USE_CXX11_ABI=0")
#pass flags to c++ compiler
SET(CUDA_PROPAGATE_HOST_FLAGS ON)
#create library
cuda_add_library(
cuda_op SHARED
src/cuda_op_kernel.cu
src/cuda_op_kernel.cc
OPTIONS -gencode=arch=compute_20,code=sm_20)
#copy test file to build folder
configure_file(src/test.py test.py COPYONLY)
test.py
import tensorflow as tf
mod = tf.load_op_library('./libcuda_op.so')
with tf.Session() as sess:
start = [5,4,3,2,1]
print(start)
print(mod.add_one(start).eval())
我能够成功编译并运行test.py
,但输出始终为[0 0 0 0 0]
。如果我将AddOneKernel<<<32, 256>>>(in, N, out);
替换为for (int i = 0; i < N; i++) out[i] = in[i] + 1;
而将DEVICE_GPU
替换为DEVICE_CPU
,则op会输出正确的值[6 5 4 3 2]
(完全相同的CMakeList.txt
)。< / p>
知道如何获取正确的值吗?
答案 0 :(得分:2)
我不完全记得我在哪里找到了CUDA的cmake内容,但选项却以某种方式弄乱了编译。将cuda_add_library
中的CMakeLists.txt
替换为以下内容可解决此问题。
#no options needed
cuda_add_library(
cuda_op SHARED
src/cuda_op_kernel.cu
src/cuda_op_kernel.cc)
答案 1 :(得分:0)
ubuntu @cubuntu:〜/ Desktop / src / src / build $ cmake ..
- 配置完成
- 生成完成
- 构建文件已写入:/ home / ubuntu / Desktop / src / src / build
ubuntu @cabuntu:〜/ Desktop / src / src / build $ make
[33%]构建NVCC(设备)对象CMakeFiles / cuda_op.d / cuda_op_generated_cuda_op_kernel.cu.o
nvcc警告:&#39; compute_20&#39;,&#39; sm_20&#39;和&#39; sm_21&#39;架构已弃用,可能会在将来的版本中删除(使用-Wno-deprecated-gpu-targets来禁止警告)。
nvcc警告:&#39; compute_20&#39;,&#39; sm_20&#39;和&#39; sm_21&#39;架构已弃用,可能会在将来的版本中删除(使用-Wno-deprecated-gpu-targets来禁止警告)。
扫描目标cuda_op的依赖关系
[66%]构建CXX对象CMakeFiles / cuda_op.dir / cuda_op_kernel.cc.o /home/ubuntu/Desktop/src/src/cuda_op_kernel.cc:1:17:错误:'tensorflow'不是名称空间名称 使用namespace tensorflow; // NOLINT(构建/命名空间)
答案 2 :(得分:0)
查看Tensorflow adding GPU op support上当前的官方GPU操作系统构建说明
nvcc -std=c++11 -c -o cuda_op_kernel.cu.o cuda_op_kernel.cu.cc \
${TF_CFLAGS[@]} -D GOOGLE_CUDA=1 -x cu -Xcompiler -fPIC
g++ -std=c++11 -shared -o cuda_op_kernel.so cuda_op_kernel.cc \
cuda_op_kernel.cu.o ${TF_CFLAGS[@]} -fPIC -lcudart ${TF_LFLAGS[@]}
如前所述,请注意,如果您的CUDA库未安装在/usr/local/lib64
中,则需要在上面的第二个(g ++)命令中显式指定路径。例如,如果您的CUDA已安装在-L /usr/local/cuda-8.0/lib64/
中,则添加/usr/local/cuda-8.0
。
此外,请注意,在某些Linux设置中,需要nvcc编译步骤的其他选项。将-D_MWAITXINTRIN_H_INCLUDED
添加到nvcc命令行中,以避免来自mwaitxintrin.h
的错误。