我想知道是否有可能使用Poisson glm通过分类/数值变量中的相互作用绘制二次曲线。就我而言:
##Data set artificial
set.seed(20)
d <- data.frame(
behv = c(rpois(100,10),rpois(100,100)),
mating=sort(rep(c("T1","T2"), 200)),
condition = scale(rnorm(200,5))
)
#Condition quadratic
d$condition2<-(d$condition)^2
#Binomial GLM ajusted
md<-glm(behv ~ mating + condition + condition2, data=d, family=poisson)
summary(md)
在模型的交配,condition和condition2很重要的情况下,我进行了以下操作:
#Create x's vaiues
x<-d$condition##
x2<-(d$condition)^2
# T1 estimation
y1<-exp(md$coefficients[1]+md$coefficients[3]*x+md$coefficients[4]*x2)
#
# T2 estimation
y2<-exp(md$coefficients[1]+md$coefficients[2]+md$coefficients[3]*x+md$coefficients[4]*x2)
#
#
#Separete data set
d_T1<-d[d[,2]!="T2",]
d_T2<-d[d[,2]!="T1",]
#Plot
plot(d_T1$condition,d_T1$behv,main="", xlab="condition", ylab="behv",
xlim=c(-4,3), ylim=c(0,200), col= "black")
points(d_T2$condition,d_T2$behv, col="gray")
lines(x,y1,col="black")
lines(x,y2,col="grey")
#
不起作用,我没有想要的曲线。我想要T1的曲线和T2的其他匹配变量。有什么解决办法吗?
答案 0 :(得分:1)
在下面的代码中,我们使用poly
函数来生成二次模型,而无需在数据框中创建额外的列。此外,我们创建了一个预测数据帧,以生成condition
值范围内和mating
的每个级别的模型预测。 predict
中的type="response"
函数根据结果的规模而不是线性预测变量的规模生成预测,这是默认设置。另外,在创建200
的数据时,我们将100
更改为mating
,以避免每个mating
级别具有完全相同的结果数据。
library(ggplot2)
# Fake data
set.seed(20)
d <- data.frame(
behv = c(rpois(100,10),rpois(100,100)),
mating=sort(rep(c("T1","T2"), 100)), # Changed from 200 to 100
condition = scale(rnorm(200,5))
)
# Model with quadratic condition
md <- glm(behv ~ mating + poly(condition, 2, raw=TRUE), data=d, family=poisson)
#summary(md)
# Get predictions at range of condition values
pred.data = data.frame(condition = rep(seq(min(d$condition), max(d$condition), length=50), 2),
mating = rep(c("T1","T2"), each=50))
pred.data$behv = predict(md, newdata=pred.data, type="response")
现在用ggplot2和底数R绘制图:
ggplot(d, aes(condition, behv, colour=mating)) +
geom_point() +
geom_line(data=pred.data)
plot(NULL, xlim=range(d$condition), ylim=range(d$behv),
xlab="Condition", ylab="behv")
with(subset(d, mating=="T1"), points(condition, behv, col="red"))
with(subset(d, mating=="T2"), points(condition, behv, col="blue"))
with(subset(pred.data, mating=="T1"), lines(condition, behv, col="red"))
with(subset(pred.data, mating=="T2"), lines(condition, behv, col="blue"))
legend(-3, 70, title="Mating", legend=c("T1","T2"), pch=1, col=c("blue", "red"))