我已经完成了一种机器学习算法,可以根据文本对类别进行分类。我完成了99%,但是我现在知道将我的预测结果合并回原始数据帧,以查看我开始时的内容以及预测的内容的打印视图。
#imports data from excel file and shows first 5 rows of data
file_name = r'C:\Users\aac1928\Documents\Machine Learning\Training Data\RFP Training Data.xlsx'
sheet = 'Sheet1'
import pandas as pd
import numpy
import xlsxwriter
import sklearn
df = pd.read_excel(io=file_name,sheet_name=sheet)
#extracts specifics rows from data
data = df.iloc[: , [0,2]]
print(data)
#Gets data ready for model
newdata = df.iloc[:,[1,2]]
newdata = newdata.rename(columns={'Label':'label'})
newdata = newdata.rename(columns={'RFP Question':'question'})
print(newdata)
# how to define X and yfor use with COUNTVECTORIZER
X = newdata.question
y = newdata.label
print(X.shape)
print(y.shape)
# split X and y into training and testing sets
X_train = X
y_train = y
X_test = newdata.question[:50]
y_test = newdata.label[:50]
print(X_train.shape)
print(X_test.shape)
print(y_train.shape)
print(y_test.shape)
# import and instantiate CountVectorizer (with the default parameters)
from sklearn.feature_extraction.text import CountVectorizer
vect = CountVectorizer()
# equivalently: combine fit and transform into a single step
X_train_dtm = vect.fit_transform(X_train)
# transform testing data (using fitted vocabulary) into a document-term matrix
X_test_dtm = vect.transform(X_test)
X_test_dtm
# import and instantiate a logistic regression model
from sklearn.linear_model import LogisticRegression
logreg = LogisticRegression()
# train the model using X_train_dtm
%time logreg.fit(X_train_dtm, y_train)
# make class predictions for X_test_dtm
y_pred_class = logreg.predict(X_test_dtm)
y_pred_class
# calculate predicted probabilities for X_test_dtm (well calibrated)
y_pred_prob = logreg.predict_proba(X_test_dtm)[:, 1]
y_pred_prob
# calculate accuracy
metrics.accuracy_score(y_test, y_pred_class)
# split X and y into training and testing sets
X_train = X
y_train = y
X_testnew = dfpred.question
y_testnew = dfpred.label
print(X_train.shape)
print(X_testnew.shape)
print(y_train.shape)
print(y_testnew.shape)
(447,) (168,) (447,) (168,)
# transform new testing data (using fitted vocabulary) into a document-term matrix
X_test_dtm_new = vect.transform(X_testnew)
X_test_dtm_new
<168x1382类型的稀疏矩阵 带有2240个压缩后的稀疏行格式的存储元素>
# make class predictions for new X_test_dtm
y_pred_class_new = nb.predict(X_test_dtm_new)
y_pred_class_new
array([3,3,19,18,5,10,10,5,19,3,3,3,5,3,3,3,3, 9,19,5,5,10,9,5,18,19,9,9,19,19,18,18,18,4, 18、3、9、18、19、19、18、19、5、19、19、3、3、18、18、5、18, 3、4、5、6、4、5、19、19、5、5、19、19、4、5、18、5、5 19、5、18、5、19、18、19、5、7、5、9、9、9、9、10、9、9 5、5、5、5、3、18、4、9、5、3、6、9、18、7、5、9、5 5、19、5、5、19、5、6、5、5、6、9、21、10、9、18、9、9 3,18,5,6,6,18,6,3,6,5,18,6,5,18,5,6,7,7, 5,7,19,18,6,5,5,5,5,5,19,16,5,19,5,5,5, [5,19,5,7,19,6,7,3,18,18,18,6,19,19,7], dtype = int64)
# calculate predicted probabilities for X_test_dtm (well calibrated)
y_pred_prob_new = logreg.predict_proba(X_test_dtm_new)[:, 1]
y_pred_prob_new
df['prediction'] = pd.Series(y_pred_class_new)
dfout = pd.merge(dfpred,df['prediction'].dropna() .to_frame(),how = 'left',left_index = True, right_index = True)
print(dfout)
我希望这可以帮助我尽量保持清晰
答案 0 :(得分:3)
我认为,由于您的预测只是一个数组,因此最好使用:
df['predictions'] = y_pred_class
答案 1 :(得分:0)
我认为您的问题是您的预测数组比原始df
短,因为您分为训练和测试集。
您定义为X_test
的{{1}}数组,看来您正在获取该列的最后50行。
我要做的是创建一个与您的预测数组长度相同的prediction_df。在您的情况下,您需要的行是原始df的最后50行。
newdata.question[:50]
只需确保您的projection_df行与您用于制作prediction_df = df.iloc[:50]
prediction_df['predictions'] = y_pred_class
的行相匹配!