我从下面的单元测试中得到以下输出:
_messageSentTask
这是单元测试
[HttpPost]
public ActionResult CreateP3(Process process)
{
var tr = process.StageID + process.PIPENO + process.Status;
var checkme = (from x in db.Processes
where x.StageID + x.PIPENO + x.Status == tr && x.Status == "OK"
select x).ToList();
if (checkme.Count > 0)
{
ModelState.AddModelError("PIPENO", "You are trying Duplicate Pipe Entry");
}
if (ModelState.IsValid)
{
if (process.PipeAl.Order.THK > 1)
{
process.MPP = 20;
}
else
{
process.MPP = 1;
}
process.CuttingSpeed = (process.ActualMeter*1000)/process.CuttingTime;
db.Processes.Add(process);
db.SaveChanges();
return RedirectToAction("IndexP3");
}
输入文件(2.9kB)可以在此处下载:https://www.dropbox.com/s/psq1gq8xpjivrim/test_buoysimoptions.mat?dl=0
为什么会出现错误[[array([[-1.57079633]])]]
[[array([[0.+1.57079633j]])]]
<module 'numpy' from '/usr/local/lib/python2.7/dist-packages/numpy/__init__.pyc'>
E
======================================================================
ERROR: test_TestWECTrain_BasicEnv_SetupAndStepping (__main__.Test_exp)
----------------------------------------------------------------------
Traceback (most recent call last):
File "Test_exp.py", line 34, in test_TestWECTrain_BasicEnv_SetupAndStepping
expsigmatphase = np.exp(tmp)
AttributeError: exp
----------------------------------------------------------------------
Ran 1 test in 0.001s
FAILED (errors=1)
?
请注意,这与"AttributeError: exp" while using numpy.exp() on an apparently ordinary array相同,但是这个问题从未得到回答,也没有像我一样提供任何最小的例子。
这是在Python 2.7中,在Python 3.5中,我得到:
import unittest
import os
import scipy.io as sio
import numpy as np
from pprint import pprint
class Test_exp (unittest.TestCase):
def test_exp (self):
data_file = "test_buoysimoptions.mat"
buoysimoptions = sio.loadmat (data_file)
t = 0.0
phase = buoysimoptions['SeaParameters']['phase']
sigma = buoysimoptions['SeaParameters']['sigma']
sigmatminusphase = sigma * t - phase; print (sigmatminusphase)
tmp = -1.0j * sigmatminusphase; print (tmp)
print (np)
tmp = np.asarray(tmp)
expsigmatphase = np.exp(tmp)
if __name__ == '__main__':
unittest.main()
编辑:有关已加载数据的更多信息
我期望AttributeError: exp
只是一个numpy数组,但似乎并没有,请参见下文,最终会导致错误
[[array([[-1.57079633]])]]
[[array([[0.+1.57079633j]])]]
E
======================================================================
ERROR: test_exp (__main__.Test_exp)
----------------------------------------------------------------------
Traceback (most recent call last):
File "Test_exp.py", line 25, in test_exp
expsigmatphase = np.exp(tmp)
AttributeError: 'numpy.ndarray' object has no attribute 'exp'
----------------------------------------------------------------------
Ran 1 test in 0.002s
FAILED (errors=1)
我是否总是需要索引[0] [0]才能获取实际的数组?在这里做什么正确的事?如果我使用了最后一个,则exp错误消失了。
答案 0 :(得分:1)
事实证明答案很简单,这些加载的变量本身就是最初的matlab结构,而在检索它们时我省略了索引,正确的做法是以下操作(注意在检索时要多出[0,0] s相位和sigma):
import unittest
import os
import scipy.io as sio
import numpy as np
from pprint import pprint
class Test_exp (unittest.TestCase):
def test_exp (self):
data_file = "test_buoysimoptions.mat"
buoysimoptions = sio.loadmat (data_file)
t = 0.0
phase = buoysimoptions['SeaParameters'][0,0]['phase']
sigma = buoysimoptions['SeaParameters'][0,0]['sigma']
sigmatminusphase = sigma * t - phase; print (sigmatminusphase)
tmp = -1.0j * sigmatminusphase; print (tmp)
print (np)
tmp = np.asarray(tmp)
expsigmatphase = np.exp(tmp)
if __name__ == '__main__':
unittest.main()