我想知道TF是否有能力在训练阶段临时存储数据?下面是一个示例:
import tensorflow as tf
import numpy as np
def loss_function(values, a, b):
N = values.shape[0]
i = tf.constant(0)
values_array = tf.get_variable(
"values", values.shape, initializer=tf.constant_initializer(values), dtype=tf.float32) # The temporary data solution in this example
result = tf.constant(0, dtype=tf.float32)
def body1(i):
op2 = tf.assign(values_array[i, 0],
234.0) # Here is where it should be updated. The value being assigned is actually calculated from variable a and b.
with tf.control_dependencies([op2]):
return i + 1
def condition1(i): return tf.less(i, N)
i = tf.while_loop(condition1, body1, [i])
op1 = tf.assign(values_array[0, 0],
9999.0) # Here is where it should be updated
result = result + tf.reduce_mean(values_array) # The final cost is calculated based on the entire values_array
with tf.control_dependencies([op1]):
return result
# The parameters we want to calculate in the end
a = tf.Variable(tf.random_uniform([1], 0, 700), name='a')
b = tf.Variable(tf.random_uniform([1], -700, 700), name='b')
values = np.ones([2, 4], dtype=np.float32)
# cost function
cost_function = loss_function(values, a, b)
# training algorithm
optimizer = tf.train.MomentumOptimizer(
0.1, momentum=0.9).minimize(cost_function)
# initializing the variables
init = tf.global_variables_initializer()
# starting the session session
sess = tf.Session()
sess.run(init)
_, training_cost = sess.run([optimizer, cost_function])
print tf.get_collection(
tf.GraphKeys.GLOBAL_VARIABLES, scope="values")[0].eval(session=sess)
目前,我从控制台获得的信息是:
[[ 0.98750001 0.98750001 0.98750001 0.98750001]
[ 0.98750001 0.98750001 0.98750001 0.98750001]]
从该示例中可以得到的是(如果可以打印出临时数据):
[[ 9999.0 1.0 1.0 1.0]
[ 234.0 1.0 1.0 1.0]]
总的来说,我想要的是cost函数根据输入的numpy 2D数组以及参数a和b计算一个临时2D数组。然后,根据临时2D阵列计算最终成本。但是我认为使用TF变量作为临时存储可能不正确...
有帮助吗?
谢谢!
答案 0 :(得分:0)
您的while循环永远不会运行,因为永远不会再使用i
。使用tf.control_dependencies
使其运行。
此外,当您似乎只想按原样添加数组时,还要添加values_array的平均值。摆脱reduce_mean
以获得所需的输出。
op1 = tf.assign(values_array[0, 0], 9999.0)
未完成,因为在以下control_dependencies
上下文中没有任何操作。将op移至上下文,以确保分配op包含在图中。
def loss_function(values, a, b):
N = values.shape[0]
i = tf.constant(0)
values_array = tf.get_variable(
"values", values.shape, initializer=tf.constant_initializer(values), dtype=tf.float32, trainable=False)
temp_values_array = tf.get_variable(
"temp_values", values.shape, dtype=tf.float32)
# copy previous values for calculations & gradients
temp_values_array = tf.assign(temp_values_array, values_array)
result = tf.constant(0, dtype=tf.float32)
def body1(i):
op2 = tf.assign(temp_values_array[i, 0],
234.0) # Here is where it should be updated. The value being assigned is actually calculated from variable a and b.
with tf.control_dependencies([op2]):
return [i+1]
def condition1(i): return tf.less(i, N)
i = tf.while_loop(condition1, body1, [i])
with tf.control_dependencies([i]):
op1 = tf.assign(temp_values_array[0, 0],
9999.0) # Here is where it should be updated
with tf.control_dependencies([op1]):
result = result + temp_values_array # The final cost is calculated based on the entire values_array
# save the calculations for later
op3 = tf.assign(values_array, temp_values_array)
with tf.control_dependencies([op3]):
return tf.identity(result)
此外,您正在获取optimizer
,因此输出的未分配元素将比您期望的要小。如果这样做,您的结果将更接近
training_cost = sess.run([cost_function])
_ = sess.run([optimizer])
这将确保您在获得cost_function
的结果之前不进行优化