我想根据Julia(v0.7)中的邻接矩阵生成加权有向网络。
到目前为止,我已经尝试过:
using LightGraphs
using SimpleWeightedGraphs
A = rand(100, 100)
G = Graph(A)
但我收到错误消息:
ERROR: ArgumentError: Adjacency / distance matrices must be symmetric
Stacktrace:
[1] SimpleGraph{Int64}(::Array{Float64,2}) at /home/user/.julia/packages/LightGraphs/PPsyP/src/SimpleGraphs/simplegraph.jl:78
[2] SimpleGraph(::Array{Float64,2}) at /home/user/.julia/packages/LightGraphs/PPsyP/src/SimpleGraphs/simplegraph.jl:72
[3] top-level scope at none:0
到目前为止,我只在github(https://github.com/JuliaGraphs/SimpleWeightedGraphs.jl)页面上看到了该示例,该示例从and edgelist生成加权图。但是,如果可以直接从邻接矩阵生成图,我会更喜欢。
答案 0 :(得分:1)
绝不是Julia图形专家,但我想您想要的是
julia> A = rand(100,100);
julia> G = SimpleWeightedDiGraph(A)
{100, 10000} directed simple Int64 graph with Float64 weights
Graph(a::AbstractMatrix)
是无向(单位加权)图的构造函数:
julia> A = A+transpose(A); # making A symmetric
julia> G = Graph(A)
{100, 5050} undirected simple Int64 graph
julia> weights(G)
100 × 100 default distance matrix (value = 1)
答案 1 :(得分:1)
建立在crstnbr答案的基础上,Graph
是无权无向的,因此,邻接矩阵理想地与[0, 1]
中的值对称。
向任何对称矩阵馈入Graph
构造函数,将为每个非零元素创建边:
A = rand(3,3);
Graph(A+A');
println.(edges(G));
Edge 1 => 1
Edge 1 => 2
Edge 1 => 3
Edge 2 => 2
Edge 2 => 3
Edge 3 => 3
SimpleWeightedDiGraph
有多个构造函数,可以采用密集或SparseMatrixCSC
邻接矩阵:
SimpleWeightedDiGraph(rand(4,4))
{4, 16} directed simple Int64 graph with Float64 weights
SimpleWeightedDiGraph(rand([0,1], 3, 3))
{3, 5} directed simple Int64 graph with Int64 weights
using SparseArrays
SimpleWeightedDiGraph( sprand(3, 3, 0.5) )
{3, 5} directed simple Int64 graph with Float64 weights
答案 2 :(得分:1)
您遇到的第一个问题是随机邻接矩阵不对称,这是无向图所必需的。您要创建一个有向图。
第二,如果您想要加权图,则需要使用SimpleWeightedGraphs.jl
包,这意味着您可以轻松完成
julia> using LightGraphs, SimpleWeightedGraphs
julia> a = rand(100,100);
julia> g = SimpleWeightedDiGraph(a)
{100, 10000} directed simple Int64 graph with Float64 weights
但是请注意,这是创建随机加权图的一种非常不好的方法,因为rand
函数几乎可以保证这将是完整的图。更好的方法是使用sprand
:
julia> using SparseArrays
julia> a = sprand(100, 100, 0.2);
julia> g = SimpleWeightedDiGraph(a)
{100, 2048} directed simple Int64 graph with Float64 weights