我有一个德克萨斯州炼油厂的数据集(此处是GeoJSON-https://pastebin.com/R0D9fif9):
Name,Latitude,Longitude
Marathon Petroleum,29.374722,-94.933611
Marathon Petroleum,29.368733,-94.903253
Valero,29.367617,-94.909515
LyondellBasell,29.71584,-95.234814
Valero,29.722213,-95.255198
Exxon,29.743865,-95.009208
Shell,29.720425,-95.12495
Petrobras,29.722466,-95.208807
我想根据这些要点创建打印的地图。但是在给定的分辨率下,它们太靠近在一起了。
由于每个炼油厂都应该在图例中提及,所以我无法聚类。所以我想
获得质心-很简单
import json
import csv
from shapely.geometry import shape, Point, MultiPoint
with open('refineries.csv', 'rU') as infile:
reader = csv.DictReader(infile)
data = {}
for row in reader:
for header, value in row.items():
try:
data[header].append(value)
except KeyError:
data[header] = [value]
listo = list(zip(data['Longitude'], data['Latitude']))
points1 = MultiPoint(points=listo)
points = MultiPoint([(-94.933611, 29.374722), (-94.903253, 29.368733), (-94.909515, 29.367617), (-95.234814, 29.71584), (-95.255198, 29.722213), (-95.009208, 29.743865), (-95.12495, 29.720425), (-95.208807, 29.722466)])
print(points.centroid)
将所有点移离质心,直到所有点之间的最小距离
请在这里帮助我吗?预先感谢!
答案 0 :(得分:0)
这取决于您要如何精确地将点从质心上移开。一种方法是针对每个点计算其相对于质心的大圆距离和方位角,并重新缩放所有距离,以确保两个最近点之间的距离大于指定的阈值。在下面的示例中,pyproj用于计算方位角和距离。
import json
import csv
import sys
from shapely.geometry import shape, Point, MultiPoint
from pyproj import Geod
with open('refineries.csv', 'rU') as infile:
reader = csv.DictReader(infile)
data = {}
for row in reader:
for header, value in row.items():
if not header in data:
data[header] = []
data[header].append(value)
listo = list(zip(map(float, data['Longitude']), map(float, data['Latitude'])))
def scale_coords(coords, required_dist = 1000.):
g = Geod(ellps = 'WGS84')
num_of_points = len(coords)
#calculate centroid
C = MultiPoint(coords).centroid
#determine the minimum distance among points
dist_min, dist_max = float('inf'), float('-inf')
for i in range(num_of_points):
lon_i, lat_i = coords[i]
for j in range(i+1, num_of_points):
lon_j, lat_j = coords[j]
_,_,dist = g.inv(lon_i, lat_i, lon_j, lat_j)
dist_min = min(dist_min, dist)
dist_max = max(dist_max, dist)
if dist_min > required_dist:
return coords
coords_scaled = [None]*num_of_points
scaling = required_dist / dist_min
for i, (lon_i, lat_i) in enumerate(coords):
az,_,dist = g.inv(C.x, C.y, lon_i, lat_i)
lon_f,lat_f,_ = g.fwd(C.x, C.y, az, dist*scaling)
coords_scaled[i] = (lon_f, lat_f)
return coords_scaled
或者,这可以与您还可以放松方位角的方法结合使用。原则上,这将导致“径向”距离的缩放比例较小。但是,这也会稍微扭曲点的“视觉分布”。同样,可以通过忽略重新缩放中的任何离群点(即,已经距质心足够远且不具有邻近点的点)来“改进”上述方法。