预测在python中使用SVC时出现“ ValueError:预期的2D数组,取而代之的是1D数组”

时间:2018-09-16 00:55:52

标签: python python-3.x machine-learning scikit-learn sklearn-pandas

使用sklearn SVC(),出现以下错误

import sklearn

from sklearn.datasets import load_iris

iris = load_iris()

X, y = iris.data, iris.target

from sklearn.svm import SVC

# create the model
mySVC = SVC()

# fit the model to data
mySVC.fit(X,y)

# test the model on (new) data
result = mySVC.predict([3, 5, 4, 2])
print(result)
print(iris.target_names[result])

ValueError                                Traceback (most recent call last)
<ipython-input-47-8994407a09e3> in <module>()
      1 # test the model on (new) data
----> 2 result = mySVC.predict([3, 5, 4, 2])
      3 print(result)
      4 print(iris.target_names[result])

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/svm/base.py in predict(self, X)
    546             Class labels for samples in X.
    547         """
--> 548         y = super(BaseSVC, self).predict(X)
    549         return self.classes_.take(np.asarray(y, dtype=np.intp))
    550 

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/svm/base.py in predict(self, X)
    306         y_pred : array, shape (n_samples,)
    307         """
--> 308         X = self._validate_for_predict(X)
    309         predict = self._sparse_predict if self._sparse else self._dense_predict
    310         return predict(X)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/svm/base.py in _validate_for_predict(self, X)
    437         check_is_fitted(self, 'support_')
    438 
--> 439         X = check_array(X, accept_sparse='csr', dtype=np.float64, order="C")
    440         if self._sparse and not sp.isspmatrix(X):
    441             X = sp.csr_matrix(X)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklearn/utils/validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
    439                     "Reshape your data either using array.reshape(-1, 1) if "
    440                     "your data has a single feature or array.reshape(1, -1) "
--> 441                     "if it contains a single sample.".format(array))
    442             array = np.atleast_2d(array)
    443             # To ensure that array flags are maintained

ValueError: Expected 2D array, got 1D array instead:
array=[3. 5. 4. 2.].
Reshape your data either using array.reshape(-1, 1) if your data has a single feature or array.reshape(1, -1) if it contains a single sample.

1 个答案:

答案 0 :(得分:2)

正如所提到的错误,您将必须传递二维数组。您可以尝试使用以下方法:

result = mySVC.predict([[3, 5, 4, 2]])

您需要传递样本,这里的每个样本都是一个数组,所以您传递的只是一个样本(因为一个样本具有4个特征)而不是样本。请注意,对于按顺序传递给预测的每个样本,您还将收到预测的数组/列表。

来自documentation

  

预测(X)

     
    

对X中的样本进行分类。

         

对于一类模型,返回+1或-1。

         

参数

         
      

X:{类似数组,稀疏矩阵},形状(n_samples,n_features)       对于kernel =“ precomputed”,X的预期形状为[n_samples_test,       n_samples_train]

    
         

返回

         
      

y_pred:数组,形状(n_samples个)

             

X中样本的类别标签。