我尝试搜索答案,但是找不到我需要的东西。抱歉,如果这是一个重复的问题。
假设我有一个二维数组,形状为(n, n*m)
。我想做的是此数组对其转置的外部求和,从而得到形状为(n*m, n*m)
的数组。例如,假设我有
A = array([[1., 1., 2., 2.],
[1., 1., 2., 2.]])
我想做一个A
和A.T
的和,这样输出是:
>>> array([[2., 2., 3., 3.],
[2., 2., 3., 3.],
[3., 3., 4., 4.],
[3., 3., 4., 4.]])
请注意,np.add.outer
无效,因为它会将输入中的向量散列为向量。我可以通过
np.tile(A, (2, 1)) + np.tile(A.T, (1, 2))
,但是当n
和m
相当大(n > 100
和m > 1000
)时,这似乎并不合理。是否可以使用einsum
来写这个总和?我似乎无法弄清einsum
。
答案 0 :(得分:2)
要利用broadcasting
,我们需要将其分解为3D
,然后置换轴并添加-
n = A.shape[0]
m = A.shape[1]//n
a = A.reshape(n,m,n) # reshape to 3D
out = (a[None,:,:,:] + a.transpose(1,2,0)[:,:,None,:]).reshape(n*m,-1)
运行示例以进行验证-
In [359]: # Setup input array
...: np.random.seed(0)
...: n,m = 3,4
...: A = np.random.randint(1,10,(n,n*m))
In [360]: # Original soln
...: out0 = np.tile(A, (m, 1)) + np.tile(A.T, (1, m))
In [361]: # Posted soln
...: n = A.shape[0]
...: m = A.shape[1]//n
...: a = A.reshape(n,m,n)
...: out = (a[None,:,:,:] + a.transpose(1,2,0)[:,:,None,:]).reshape(n*m,-1)
In [362]: np.allclose(out0, out)
Out[362]: True
n
,m
-大的计时-
In [363]: # Setup input array
...: np.random.seed(0)
...: n,m = 100,100
...: A = np.random.randint(1,10,(n,n*m))
In [364]: %timeit np.tile(A, (m, 1)) + np.tile(A.T, (1, m))
1 loop, best of 3: 407 ms per loop
In [365]: %%timeit
...: # Posted soln
...: n = A.shape[0]
...: m = A.shape[1]//n
...: a = A.reshape(n,m,n)
...: out = (a[None,:,:,:] + a.transpose(1,2,0)[:,:,None,:]).reshape(n*m,-1)
1 loop, best of 3: 219 ms per loop
numexpr
我们可以利用multi-core
with numexpr
module处理大数据并获得内存效率和性能-
import numexpr as ne
n = A.shape[0]
m = A.shape[1]//n
a = A.reshape(n,m,n)
p1 = a[None,:,:,:]
p2 = a.transpose(1,2,0)[:,:,None,:]
out = ne.evaluate('p1+p2').reshape(n*m,-1)
具有相同的n
,m
大型设置的计时-
In [367]: %%timeit
...: # Posted soln
...: n = A.shape[0]
...: m = A.shape[1]//n
...: a = A.reshape(n,m,n)
...: p1 = a[None,:,:,:]
...: p2 = a.transpose(1,2,0)[:,:,None,:]
...: out = ne.evaluate('p1+p2').reshape(n*m,-1)
10 loops, best of 3: 152 ms per loop
答案 1 :(得分:0)
一种方法是
(A.reshape(-1,*A.shape).T+A)[:,0,:]
我认为n>100
和m>1000
会占用大量内存。
但与
不同np.add.outer(A,A)[:,0,:].reshape(4,-1)