在温度和应变数据上应用PCA时出现以下错误。
T1是温度,W_A1是应变数据。两者的长度均为6000。
我使用panada数据框从excel获取温度数据,而使用pd数据框从excel获取应变数据。
数据是应变温度的2D。我真的不知道那个错误是怎么回事。
错误是
ValueError:n_components = 2必须在0到n_features = 1之间,且svd_solver ='full'
# Import the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Import Data
print("process data")
T1 = temperature['T1'].tolist()
W_A1 = strain[0]
N = len(T1)
xData = T1
yData = W_A1
xData = np.reshape(xData, (N, 1))
yData = np.reshape(yData, (N, 1))
# Split into the Training set and Test set
from sklearn.model_selection import train_test_split
Xtrain, Xtest, ytrain, ytest = train_test_split(xData, yData, test_size=0.2)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
Xtrain = sc.fit_transform(Xtrain)
Xtest = sc.transform(Xtest)
# Applying PCA
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
Xtrain = pca.fit_transform(Xtrain)
Xtest = pca.transform(Xtest)
explained_variance = pca.explained_variance_ratio_
# Train Regression Model with PCA
from sklearn.linear_model import LogisticRegression
classifier = LogisticRegression(random_state=0)
classifier.fit(Xtrain, ytrain)
# Predict Results from PCA Model
ypred = classifier.predict(Xtest)
# Create Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(ytest, ypred)
# Visual the Training results
from matplotlib.colors import ListedColormap
X_set, y_set = Xtrain, ytrain
X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start=X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha=0.75, cmap=ListedColormap(('red', 'green', 'blue')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c=ListedColormap(('red', 'green', 'blue'))(i), label=j)
plt.title('LogisticRegression(Trainingset')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend()
plt.show()
# Visual the Test set results
from matplotlib.colors import ListedColormap
X_set, y_set = Xtest, ytest
X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start=X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha=0.75, cmap=ListedColormap(('red', 'green', 'blue')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c=ListedColormap(('red', 'green', 'blue'))(i), label=j)
plt.title('LogisticRegression(Testset)')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend()
plt.show()
# Visual the Test set results
from matplotlib.colors import ListedColormap
Xset, y_set = Xtest, ytest
X1, X2 = np.meshgrid(np.arange(start=X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start=X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha=0.75, cmap=ListedColormap(('red', 'green', 'blue')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c=ListedColormap(('red', 'green', 'blue'))(i), label=j)
plt.title('Regression(Testset)')
plt.xlabel('PC1')
plt.ylabel('PC2')
plt.legend()
plt.show()
print(ypred)