我有此数据:
ID Name Status Date
1 Machine1 Active 2018-01-01
2 Machine2 Fault 2018-01-01
3 Machine3 Active 2018-01-01
4 Machine1 Fault 2018-01-02
5 Machine2 Active 2018-01-02
6 Machine3 Active 2018-01-02
7 Machine2 Active 2018-01-03
8 Machine1 Fault 2018-01-03
9 Machine2 Active 2018-01-04
10 Machine1 Fault 2018-01-04
11 Machine3 Active 2018-01-06
输入
我想要这些数据输出
预期输出
Name Last Status Count
Machine1 Fault 3
Machine2 Active 3
Machine3 Active 1 Because Date is not Continuous
* Count:连续历史记录中的最后一个状态
答案 0 :(得分:0)
尽管SQLFiddle目前适合,但我认为这会起作用,所以我无法测试:
SELECT [Name], [Status], ct as [Count]
FROM (
SELECT
[name],
[status],
[date],
1 + (SUM( grp ) OVER (PARTITION BY [name], [status] ORDER BY [date] ROWS BETWEEN 1 PRECEDING AND 0 FOLLOWING ) * grp) ct,
row_number() over(partition by [name] order by [date] desc) rn
FROM
(
SELECT *, CASE WHEN LAG([Date]) OVER(PARTITION BY [name], [status] ORDER BY [date] ) = DATEADD(day, -1, [date]) THEN 1 ELSE 0 END grp
FROM t
) x
) y
WHERE
rn = 1
首先使用LAG查看当前行和上一行(将数据分组为计算机名称和状态,并按日期对数据进行排序),如果当前日期与上一日期不同1天,则会记录一个1否则为0
这些1和0以连续总计的方式求和,在计算机名称或状态更改时重置(sum()over()的分区)
我们还希望仅根据计算机名称来考虑数据,并且只希望每台计算机上的最新记录,因此我们按计算机名称进行分区,并按日期降序计数,然后选择(用where子句)每台计算机上编号为1的行
如果像这样单独运行查询,实际上会更有意义
计算“对于给定的状态和机器,当前报告是否与上一个报告连续” 1 =是,0 =否:
SELECT *, CASE WHEN LAG([Date]) OVER(PARTITION BY [name], [status] ORDER BY [date] ) = DATEADD(day, -1, [date]) THEN 1 ELSE 0 END grp
FROM t
计算“连续报告的当前块的总运行量”:
SELECT
[name],
[status],
[date],
1 + (SUM( grp ) OVER (PARTITION BY [name], [status] ORDER BY [date] ROWS BETWEEN 1 PRECEDING AND 0 FOLLOWING ) * grp) ct,
row_number() over(partition by [name] order by [date] desc) rn
FROM
(
SELECT *, CASE WHEN LAG([Date]) OVER(PARTITION BY [name], [status] ORDER BY [date] ) = DATEADD(day, -1, [date]) THEN 1 ELSE 0 END grp
FROM t
) x
然后,整个过程,但是没有where子句,因此您可以看到我们正在丢弃的数据:
SELECT [Name], [Status], ct as [Count]
FROM (
SELECT
[name],
[status],
[date],
1 + (SUM( grp ) OVER (PARTITION BY [name], [status] ORDER BY [date] ROWS BETWEEN 1 PRECEDING AND 0 FOLLOWING ) * grp) ct,
row_number() over(partition by [name] order by [date] desc) rn
FROM
(
SELECT *, CASE WHEN LAG([Date]) OVER(PARTITION BY [name], [status] ORDER BY [date] ) = DATEADD(day, -1, [date]) THEN 1 ELSE 0 END grp
FROM t
) x
) y
小提琴终于醒了:
答案 1 :(得分:0)
我相信它是如此简单:
WITH cte1 AS (
SELECT
Name,
Status,
DATEADD(DAY, ROW_NUMBER() OVER (PARTITION BY Name, Status ORDER BY Date DESC) - 1, Date) AS GroupingDate
FROM testdata
), cte2 AS (
SELECT
Name,
Status,
RANK() OVER (PARTITION BY Name ORDER BY GroupingDate DESC) AS GroupingNumber
FROM cte1
)
SELECT Name, Status AS LastStatus, COUNT(*) AS LastStatusCount
FROM cte2
WHERE GroupingNumber = 1
GROUP BY Name, Status
ORDER BY Name
| Name | LastStatus | LastStatusCount |
|----------|------------|-----------------|
| Machine1 | Fault | 3 |
| Machine2 | Active | 3 |
| Machine3 | Active | 1 |
为了了解其工作原理,请查看CTE生成的中间值:
| Name | Status | Date | RowNumber | GroupingDate | GroupingNumber |
|----------|--------|---------------------|-----------|---------------------|----------------|
| Machine1 | Fault | 04/01/2018 00:00:00 | 1 | 04/01/2018 00:00:00 | 1 |
| Machine1 | Fault | 03/01/2018 00:00:00 | 2 | 04/01/2018 00:00:00 | 1 |
| Machine1 | Fault | 02/01/2018 00:00:00 | 3 | 04/01/2018 00:00:00 | 1 |
| Machine1 | Active | 01/01/2018 00:00:00 | 1 | 01/01/2018 00:00:00 | 4 |
| Machine2 | Active | 04/01/2018 00:00:00 | 1 | 04/01/2018 00:00:00 | 1 |
| Machine2 | Active | 03/01/2018 00:00:00 | 2 | 04/01/2018 00:00:00 | 1 |
| Machine2 | Active | 02/01/2018 00:00:00 | 3 | 04/01/2018 00:00:00 | 1 |
| Machine2 | Fault | 01/01/2018 00:00:00 | 1 | 01/01/2018 00:00:00 | 4 |
| Machine3 | Active | 06/01/2018 00:00:00 | 1 | 06/01/2018 00:00:00 | 1 |
| Machine3 | Active | 02/01/2018 00:00:00 | 2 | 03/01/2018 00:00:00 | 2 |
| Machine3 | Active | 01/01/2018 00:00:00 | 3 | 03/01/2018 00:00:00 | 2 |
这里的窍门是,如果两个数字是连续的,那么从它们中减去连续的数字将得到相同的值。例如。如果我们有5, 6, 8, 9
,则按该顺序减去1, 2, 3, 4
将产生4, 4, 5, 5
。