如何根据排名映射比较和返回较低的分数

时间:2018-09-10 15:37:26

标签: python pandas ranking

我需要比较两个分数并根据映射返回两个分数中较大的一个。

这是我的地图

mapping=pd.DataFrame({'rank': {0: 1, 1: 2, 2: 3, 3: 4},
 'score1': {0: 'a', 1: 'aa', 2: 'b', 3: 'bb'},
 'score2': {0: 'x', 1: 'xx', 2: 'y', 3: 'yy'}})

   rank score1 score2
0     1      a      x
1     2     aa     xx
2     3      b      y
3     4     bb     yy

根据上面的映射,如果我的输入数据如下:

data=pd.DataFrame({'score1': {0: 'a', 1: 'aa', 2: 'b', 3:nan}, 'score2': {0: 'x', 1: nan, 2: 'x', 3: nan}})
  score1 score2
0      a      x
1     aa    NaN
2      b      x
3     NaN   NaN

我想根据上面的排名映射表返回两个分数中的较低者: 如果一个分数是Nan,它将被忽略;如果两个分数具有相同的排名,则会随机选择一个。

  score1 score2 lower_of_two
0      a      x            a
1     aa    NaN           aa
2      b      x            b
3     NaN   NaN          NaN

我当前正在做的事情是首先将排名添加到DataFrame中,然后使用get_lower_rating函数获得两者中的较低者,但是我需要处理所有Nan情况,这非常麻烦。 / p>

  score1 score2  rank1  rank2 
0      a      x      1    1.0          
1     aa    NaN      2    NaN        
2      b      x      3    1.0   

def get_lower_rating(row):
    rank1 = row['rank1']
    rank2 = row['rank2']
    out_col = 'lower_of_two'

    if not rank1 and not rank2:
        row[out_col] = None
        return row

    if not rank1 and rank2:
        row[out_col] = row['score2']
        return row

    if rank1 and not rank2:
        row[out_col] = row['score1']
        return row

    if rank1 <= rank2:
        row[out_col] = row['score2']
    else:
        row[out_col] = row['score1']

    return row

这样做有什么好处?

任何建议都值得赞赏!

1 个答案:

答案 0 :(得分:0)

您可以通过pd.melt创建映射字典。然后使用NumPy高级索引:

d = pd.melt(mapping, id_vars=['rank'], value_vars=['score1', 'score2'])\
      .set_index('value')['rank'].to_dict()

row_idx = np.arange(len(data.index))
col_idx = data[['score1', 'score2']].applymap(d.get).fillna(-1).values.argmax(1)

data['lower_of_two'] = data.values[row_idx, col_idx]

print(data)

  score1 score2 lower_of_two
0      a      x            a
1     aa    NaN           aa
2      b      x            b
3    NaN    NaN          NaN