我目前正在微调ssd mobilenet v2模型,以改善人工检测并收到以下问题:
2018-09-07 14:05:33.501707: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1471] Adding visible gpu devices: 0
2018-09-07 14:05:34.037588: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:952] Device interconnect StreamExecutor with strength 1 edge matrix:
2018-09-07 14:05:34.040906: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:958] 0
2018-09-07 14:05:34.043348: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:971] 0: N
2018-09-07 14:05:34.045821: I T:\src\github\tensorflow\tensorflow\core\common_runtime\gpu\gpu_device.cc:1084] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4734 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060 6GB, pci bus id: 0000:01:00.0, compute capability: 6.1)
INFO:tensorflow:Restoring parameters from D:/Databases/Coco/cctv/tf/ssd_mobilenet_v2_coco_2018_03_29/model.ckpt
INFO:tensorflow:Restoring parameters from D:/Databases/Coco/cctv/tf/ssd_mobilenet_v2_coco_2018_03_29/model.ckpt
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Starting Session.
INFO:tensorflow:Starting Session.
INFO:tensorflow:Saving checkpoint to path training/model2/model.ckpt
INFO:tensorflow:Saving checkpoint to path training/model2/model.ckpt
INFO:tensorflow:Starting Queues.
INFO:tensorflow:Starting Queues.
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:global_step/sec: 0
INFO:tensorflow:Error reported to Coordinator: <class 'tensorflow.python.framework.errors_impl.InvalidArgumentError'>, indices[1] = 2 is not in [0, 1)
[[Node: cond_2/RandomCropImage/PruneCompleteleyOutsideWindow/Gather/GatherV2_1 = GatherV2[Taxis=DT_INT32, Tindices=DT_INT64, Tparams=DT_INT64, _device="/job:localhost/replica:0/task:0/device:CPU:0"](cond_2/Switch_3:1, cond_2/RandomCropImage/PruneCompleteleyOutsideWindow/Reshape, cond_2/RandomCropImage/PruneNonOverlappingBoxes/Gather/GatherV2/axis)]]
INFO:tensorflow:Error reported to Coordinator: <class 'tensorflow.python.framework.errors_impl.InvalidArgumentError'>, indices[1] = 2 is not in [0, 1)
[[Node: cond_2/RandomCropImage/PruneCompleteleyOutsideWindow/Gather/GatherV2_1 = GatherV2[Taxis=DT_INT32, Tindices=DT_INT64, Tparams=DT_INT64, _device="/job:localhost/replica:0/task:0/device:CPU:0"](cond_2/Switch_3:1, cond_2/RandomCropImage/PruneCompleteleyOutsideWindow/Reshape, cond_2/RandomCropImage/PruneNonOverlappingBoxes/Gather/GatherV2/axis)]]
INFO:tensorflow:Caught OutOfRangeError. Stopping Training. FIFOQueue '_3_prefetch_queue' is closed and has insufficient elements (requested 1, current size 0)
[[Node: prefetch_queue_Dequeue = QueueDequeueV2[component_types=[DT_STRING, DT_INT32, DT_FLOAT, DT_INT32, DT_FLOAT, ..., DT_INT32, DT_INT32, DT_INT32, DT_STRING, DT_INT32], timeout_ms=-1, _device="/job:localhost/replica:0/task:0/device:CPU:0"](prefetch_queue)]]
读取tf记录似乎有问题,因为在INFO:tensorflow:global_step / sec:0之后,我没有收到教程2中显示的预期训练摘要。
我发现了很多与此相关的问题,通常的解决方案是该路径可能对tf记录不正确或tf记录为空。就我而言,路径是正确的,我的tf记录为55000KB。
我正在使用教程tutorial 1,并参考了tutorial 2。我的图片是300 x 300,我有1个班级。
我生成tf记录的代码如下:
import os
import io
import glob
import hashlib
import pandas as pd
import xml.etree.ElementTree as ET
import tensorflow as tf
import random
import sys
sys.path.append("{D:\\Databases\\Coco\\cctv\\object_detection")
sys.path.append("D:\\Databases\\Coco\\cctv\\object_detection\\utils")
from PIL import Image
#import Image
import dataset_util #from object_detection.utils
'''
this script automatically divides dataset into training and evaluation (10% for evaluation)
this scripts also shuffles the dataset before converting it into tfrecords
if u have different structure of dataset (rather than pascal VOC ) u need to change
the paths and names input directories(images and annotation) and output tfrecords names.
(note: this script can be enhanced to use flags instead of changing parameters on code).
default expected directories tree:
dataset-
-JPEGImages
-Annotations
dataset_to_tfrecord.py
to run this script:
$ python dataset_to_tfrecord.py
'''
def create_example(xml_file):
#process the xml file
xmlp = ET.XMLParser(encoding="utf-8")
tree = ET.parse(xml_file,parser=xmlp)
#tree = ET.parse(xml_file)
root = tree.getroot()
image_name =str(xml_file).rsplit('\\', 1)[-1].replace('.xml', '.jpg')[:-1]
print("image_name",image_name)
file_name = image_name.encode('utf8')
size=root.find('size')
width = int(size[0].text)
height = int(size[1].text)
xmin = []
ymin = []
xmax = []
ymax = []
classes = []
classes_text = []
for x_min in root.findall(".//xmin"):
xmin.append(float(x_min.text) / float(width))
for y_min in root.findall(".//ymin"):
ymin.append(float(y_min.text) / float(height))
for y_max in root.findall(".//ymax"):
ymax.append(float(y_max.text) / float(height))
for x_max in root.findall(".//xmax"):
xmax.append(float(x_max.text)/ float(width))
#if you have more than one classes in dataset you can change the next line
#to read the class from the xml file and change the class label into its
#corresponding integer number, u can use next function structure
classes.append(1) # i wrote 1 because i have only one class(person)
classes_text.append('pedestrian'.encode('utf8'))
#read corresponding image
full_path = 'C:/Users/SDy/Desktop/testfinalALL/'+image_name #provide the path of images directory
with tf.gfile.GFile(full_path, 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
if image.format != 'JPEG':
raise ValueError('Image format not JPEG')
key = hashlib.sha256(encoded_jpg).hexdigest()
#create TFRecord Example
example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(file_name),
'image/source_id': dataset_util.bytes_feature(file_name),
'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmin),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmax),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymin),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymax),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
print(example)
return example
def main(_):
writer_train = tf.python_io.TFRecordWriter('C:/Users/SD/Desktop/tfrecordfinalALL/test2.record')
#writer_test = tf.python_io.TFRecordWriter('test.record')
#provide the path to annotation xml files directory
filename_list=tf.train.match_filenames_once('C:/Users/SD/Desktop/testxmlfinalALL/*.xml')
init = (tf.global_variables_initializer(), tf.local_variables_initializer())
sess=tf.Session()
sess.run(init)
list=sess.run(filename_list)
random.shuffle(list) #shuffle files list
i=1
trn=0 #to count number of images for training
for xml_file in list:
print(xml_file)
print(" jjj")
print(i)
example = create_example(xml_file)
writer_train.write(example.SerializeToString())
trn=trn+1
i=i+1
#writer_test.close()
writer_train.close()
print('Successfully converted dataset to TFRecord.')
print('training dataset: # ')
print(trn)
if __name__ == '__main__':
tf.app.run()
完成后,我将tf记录移到training文件夹中,并且路径在配置文件中定义。
我的配置文件的训练路径如图所示。
我的ssd_mobilenet_v2_coco_config代码为:
# SSD with Mobilenet v2 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
ssd {
num_classes: 1
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
}
}
similarity_calculator {
iou_similarity {
}
}
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 300
width: 300
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 3
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v2'
min_depth: 16
depth_multiplier: 1.0
use_depthwise: true
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
}
}
}
loss {
classification_loss {
weighted_sigmoid {
}
}
localization_loss {
weighted_smooth_l1 {
}
}
hard_example_miner {
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 3
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SIGMOID
}
}
}
train_config: {
batch_size: 24
optimizer {
rms_prop_optimizer: {
learning_rate: {
exponential_decay_learning_rate {
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
}
}
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
}
}
fine_tune_checkpoint: "D:/Databases/Coco/cctv/tf/ssd_mobilenet_v2_coco_2018_03_29/model.ckpt"
fine_tune_checkpoint_type: "detection"
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
ssd_random_crop {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "D:/Code/Image/cctvmodel/tfrecordfinalALL/train2.record"
}
label_map_path: "D:/Code/Image/cctvmodel/label_map.pbtxt"
}
eval_config: {
num_examples: 8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}
eval_input_reader: {
tf_record_input_reader {
input_path: "D:/Code/Image/cctvmodel/tfrecordfinalALL/test2.record"
}
label_map_path: "D:/Code/Image/cctvmodel/label_map.pbtxt"
shuffle: false
num_readers: 1
}
我的label_map.pbtxt包含以下内容:
item {
id: 1
name: 'pedestrian'
}
最后要在cmd提示符下运行模型,我使用以下代码:
(tensorflow) c:\models-master\research>python object_detection/legacy/train.py --logtostderr --train_dir=training/model2/ --pipeline_config_path=training/ssd_mobilenet_v2_2.config
根据信息提供发生此问题的原因。它不是在训练或没有打开tf记录。除此之外,还生成了模型,当我测试模型时,得到的结果如下。