Java8 stream.map在相同的流上输出不同的映射功能?

时间:2018-09-06 18:54:42

标签: lambda java-8 functional-programming java-stream

有人可以帮助我优化下面的代码吗?我不想在同一列表上播放3次。我必须在同一列表上进行迭代并应用不同的映射功能。 有人可以提出任何更好的解决方案吗?

List<Dummy> dummy = getDummyData(); //Assume we are getting data from some source
List<NewDummy> newDummyList = dummy.stream().map(eachDummy -> mapper.map(eachDummy, NewDummy.class)).collect(Collectors.toList());

if(someCondition) {
  final BigDecimal amount1 = dummy.stream().filter(eachDummy -> Optional.ofNullable(eachDummy.getAmount1()).isPresent())
                                  .map(Dummy::getAmount1).reduce(BigDecimal.ZERO, BigDecimal::add);
  final BigDecimal amount2 = dummy.stream().filter(eachDummy -> Optional.ofNullable(eachDummy.getAmount2()).isPresent())
                                  .map(Dummy::getAmount2).reduce(BigDecimal.ZERO, BigDecimal::add);

  return new DummyObject(newDummyList, amount1, amount2);
} else {
    return new DummyObject(newDummyList);
}

2 个答案:

答案 0 :(得分:6)

这似乎是自定义收集器的理想用例。但在此之前,我认为您可以按如下方式简化金额的总和:

BigDecimal amount1 = dummy.stream()
    .map(Dummy::getAmount1)
    .filter(Objects::nonNull)
    .reduce(BigDecimal::add).orElse(BigDecimal.ZERO);

现在,自定义收集器。您可以将Dummy的实例累积到静态实用程序方法内的专用本地类的实例中:

static Collector<Dummy, ?, DummyObject> toDummyObject(
        Function<Dummy, NewDummy> mapper, 
        boolean someCondition) {

    class Accumulator {
        List<NewDummy> newDummyList = new ArrayList<>();
        BigDecimal amount1 = BigDecimal.ZERO;
        BigDecimal amount2 = BigDecimal.ZERO;

        public void add(Dummy dummy) {
            newDummyList.add(mapper.apply(dummy));
        }

        public void addAndSum(Dummy dummy) {
            if (dummy.getAmount1() != null) amount1 = amount1.add(dummy.getAmount1());
            if (dummy.getAmount2() != null) amount2 = amount2.add(dummy.getAmount2());
            add(dummy);
        }

        public Accumulator merge(Accumulator another) {
            newDummyList.addAll(another.newDummyList);
            return this;
        }

        public Accumulator mergeAndSum(Accumulator another) {
            amount1 = amount1.add(another.amount1);
            amount2 = amount2.add(another.amount2);
            return merge(another);
        }

        public DummyObject finish() {
            return someCondition ?
                new DummyObject(newDummyList, amount1, amount2) :
                new DummyObject(newDummyList);
        }
    }

    return Collector.of(
        Accumulator::new, 
        someCondition ? Accumulator::addAndSum : Accumulator::add,
        someCondition ? Accumulator::mergeAndSum : Accumulator::merge,
        Accumulator::finish);
}

现在我们准备出发:

dummy.stream().collect(toDummyObject(
    eachDummy -> mapper.map(eachDummy, NewDummy.class), 
    someCondition));

答案 1 :(得分:4)

我同意Federico的观点,Collector似乎是这里的最佳选择。

但是,我宁愿只执行一些通用的“构建模块”,而不是实施一个非常专业的Collector,然后使用这些模块来< em>组成在给定情况下需要的Collector

假设:

interface Mapper<T> {
    T map(Dummy dummy, Class<T> type);
}

这是使用我的解决方案时DummyObject的结构的样子:

Collector<Dummy, ?, DummyObject> dummyObjectCollector = someCondition
        ? toDummyObjectWithSums(mapper)
        : toDummyObjectWithoutSums(mapper);
return dummy.stream().collect(dummyObjectCollector);

这是我撰写特定于用例的Collector的方式:

private static Collector<Dummy, ?, DummyObject> toDummyObjectWithoutSums(Mapper<NewDummy> mapper) {
    return Collectors.collectingAndThen(toNewDummyList(mapper), DummyObject::new);
}

private static Collector<Dummy, ?, List<NewDummy>> toNewDummyList(Mapper<NewDummy> mapper) {
    return Collectors.mapping(dummy -> mapper.map(dummy, NewDummy.class), Collectors.toList());
}

private static Collector<Dummy, ?, DummyObject> toDummyObjectWithSums(Mapper<NewDummy> mapper) {
    return ExtraCollectors.collectingBoth(
            toNewDummyList(mapper),
            sumGroupCollector(),
            (newDummyList, amountSumPair) -> new DummyObject(
                    newDummyList, amountSumPair.getAmountSum1(), amountSumPair.getAmountSum2()
            )
    );
}

private static Collector<Dummy, ?, AmountSumPair> sumGroupCollector() {
    return ExtraCollectors.collectingBoth(
            summingAmount(Dummy::getAmount1),
            summingAmount(Dummy::getAmount2),
            AmountSumPair::new
    );
}

static Collector<Dummy, ?, BigDecimal> summingAmount(Function<Dummy, BigDecimal> getter) {
    return Collectors.mapping(getter,
            ExtraCollectors.filtering(Objects::nonNull,
                    ExtraCollectors.summingBigDecimal()
            )
    );
}

private static class AmountSumPair {
    private final BigDecimal amountSum1;
    private final BigDecimal amountSum2;

    // constructor + getters
}

最后,我们介绍了通用的“构建块”(我将其放置在ExtraCollectors类中):

  • summingBigDecimal:很明显
  • filtering:也很明显(相当于Stream.filter
  • collectingBoth :这是最有趣的之一:
    1. 需要两个Collector(都在T上运行,但是返回不同的结果,即Collector<T, ?, R1>Collector<T, ?, R2>
    2. 并使用BiFunction<R1, R2, R>将它们组合成一个Collector<T, ?, R>

这是ExtraCollectors类:

final class ExtraCollectors {

    static Collector<BigDecimal, ?, BigDecimal> summingBigDecimal() {
        return Collectors.reducing(BigDecimal.ZERO, BigDecimal::add);
    }

    static <T, A, R> Collector<T, A, R> filtering(
            Predicate<T> filter, Collector<T, A, R> downstream) {
        return Collector.of(
                downstream.supplier(),
                (A acc, T t) -> {
                    if (filter.test(t)) {
                        downstream.accumulator().accept(acc, t);
                    }
                },
                downstream.combiner(),
                downstream.finisher(),
                downstream.characteristics().toArray(new Collector.Characteristics[0])
        );
    }

    static <T, R1, R2, R> Collector<T, ?, R> collectingBoth(
            Collector<T, ?, R1> collector1, Collector<T, ?, R2> collector2, BiFunction<R1, R2, R> biFinisher) {
        return collectingBoth(new BiCollectorHandler<>(collector1, collector2), biFinisher);
    }

    // method needed to capture A1 and A2
    private static <T, A1, R1, A2, R2, R> Collector<T, ?, R> collectingBoth(
            BiCollectorHandler<T, A1, R1, A2, R2> biCollectorHandler, BiFunction<R1, R2, R> biFinisher) {
        return Collector.<T, BiCollectorHandler<T, A1, R1, A2, R2>.BiAccumulator, R>of(
                biCollectorHandler::newBiAccumulator,
                BiCollectorHandler.BiAccumulator::accept,
                BiCollectorHandler.BiAccumulator::combine,
                biAccumulator -> biAccumulator.finish(biFinisher)
        );
    }
}

这是BiCollectorHandler类(由ExtraCollectors.collectingBoth内部使用):

final class BiCollectorHandler<T, A1, R1, A2, R2> {

    private final Collector<T, A1, R1> collector1;
    private final Collector<T, A2, R2> collector2;

    BiCollectorHandler(Collector<T, A1, R1> collector1, Collector<T, A2, R2> collector2) {
        this.collector1 = collector1;
        this.collector2 = collector2;
    }

    BiAccumulator newBiAccumulator() {
        return new BiAccumulator(collector1.supplier().get(), collector2.supplier().get());
    }

    final class BiAccumulator {

        final A1 acc1;
        final A2 acc2;

        private BiAccumulator(A1 acc1, A2 acc2) {
            this.acc1 = acc1;
            this.acc2 = acc2;
        }

        void accept(T t) {
            collector1.accumulator().accept(acc1, t);
            collector2.accumulator().accept(acc2, t);
        }

        BiAccumulator combine(BiAccumulator other) {
            A1 combined1 = collector1.combiner().apply(acc1, other.acc1);
            A2 combined2 = collector2.combiner().apply(acc2, other.acc2);
            return new BiAccumulator(combined1, combined2);
        }

        <R> R finish(BiFunction<R1, R2, R> biFinisher) {
            R1 result1 = collector1.finisher().apply(acc1);
            R2 result2 = collector2.finisher().apply(acc2);
            return biFinisher.apply(result1, result2);
        }
    }
}