我有四个NVIDIA GTX 1080图形卡,并且在初始化会话时,会看到以下控制台输出:
Adding visible gpu devices: 0, 1, 2, 3
Device interconnect StreamExecutor with strength 1 edge matrix:
0 1 2 3
0: N Y N N
1: Y N N N
2: N N N Y
3: N N Y N
我也有2张NVIDIA M60 Tesla图形卡,初始化看起来像:
Adding visible gpu devices: 0, 1, 2, 3
Device interconnect StreamExecutor with strength 1 edge matrix:
0 1 2 3
0: N N N N
1: N N N N
2: N N N N
3: N N N N
我注意到自从上次将1080 gpu的更新从1.6更改为1.8以来,此输出已更改。它看起来像这样(不能精确地记住,只是回忆):
Adding visible gpu devices: 0, 1, 2, 3
Device interconnect StreamExecutor with strength 1 edge matrix:
0 1 2 3 0 1 2 3
0: Y N N N 0: N N Y N
1: N Y N N or 1: N N N Y
2: N N Y N 2: Y N N N
3: N N N Y 3: N Y N N
我的问题是:
答案 0 :(得分:3)
这是什么设备互连?
如Almog David在评论中所述,它告诉您一个GPU是否可以直接访问另一个GPU。
它对计算能力有什么影响?
唯一的效果就是多GPU训练。如果两个GPU具有设备互连,则数据传输会更快。
为什么不同的GPU会有区别?
这取决于硬件设置的拓扑。主板只有这么多的PCI-e插槽通过同一条总线连接。 (使用nvidia-smi topo -m
检查拓扑)
由于硬件原因(故障,驱动程序不一致...),它会随着时间变化吗?
除非NVIDIA更改默认的枚举方案,否则我认为顺序不会随时间变化。 here
还有更多细节此消息是在BaseGPUDeviceFactory::CreateDevices
函数中生成的。以给定的顺序遍历每对设备 并调用cuDeviceCanAccessPeer
。正如Almog David在评论中所说,这仅表明您是否可以在设备之间执行DMA。
您可以进行一些测试以检查订单是否重要。请考虑以下代码段:
#test.py
import tensorflow as tf
#allow growth to take up minimal resources
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
现在让我们检查CUDA_VISIBLE_DEVICES
$ CUDA_VISIBLE_DEVICES=0,1,2,3 python3 test.py
...
2019-03-26 15:26:16.111423: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0, 1, 2, 3
2019-03-26 15:26:18.635894: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-03-26 15:26:18.635965: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0 1 2 3
2019-03-26 15:26:18.635974: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N Y N N
2019-03-26 15:26:18.635982: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 1: Y N N N
2019-03-26 15:26:18.635987: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 2: N N N Y
2019-03-26 15:26:18.636010: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 3: N N Y N
...
$ CUDA_VISIBLE_DEVICES=2,0,1,3 python3 test.py
...
2019-03-26 15:26:30.090493: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0, 1, 2, 3
2019-03-26 15:26:32.758272: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-03-26 15:26:32.758349: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0 1 2 3
2019-03-26 15:26:32.758358: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N N N Y
2019-03-26 15:26:32.758364: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 1: N N Y N
2019-03-26 15:26:32.758389: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 2: N Y N N
2019-03-26 15:26:32.758412: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 3: Y N N N
...
您可以通过运行nvidia-smi topo -m
获得有关连接的更详细说明。例如:
GPU0 GPU1 GPU2 GPU3 CPU Affinity
GPU0 X PHB SYS SYS 0-7,16-23
GPU1 PHB X SYS SYS 0-7,16-23
GPU2 SYS SYS X PHB 8-15,24-31
GPU3 SYS SYS PHB X 8-15,24-31
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe switches (without traversing the PCIe Host Bridge)
PIX = Connection traversing a single PCIe switch
NV# = Connection traversing a bonded set of # NVLinks
我相信您在名单上的排名越低,转移越快。