Tensorboard嵌入式投影仪不起作用。 (PCA图为空白。)

时间:2018-09-03 15:14:13

标签: tensorflow gensim word2vec tensorboard embedding

我正在实现简单的word2vec嵌入。

我想使用张量板嵌入投影仪可视化嵌入结果。

我使用gensim.models.word2vec处理单词嵌入,并使用张量板可视化向量空间。

所有ckpt和元数据,tsv文件均已创建。

我的台式机使用相同的代码向我显示了完全正确的结果,但是我的笔记本电脑没有显示相同的结果。

在我的笔记本电脑中,仅显示PCA矢量轴(x,y,z)。不是矢量点。

当我单击向量空间时,我不会有任何反应。

但是当我按标签(在右窗口)搜索时,邻居会正确显示(与我的桌面中的结果相同)

我已经尝试删除conda env并重新创建conda env和所需的库。

我不知道如何解决这个问题。

我的代码:

import sys, os
from gensim.models import Word2Vec
import tensorflow as tf
import numpy as np
from tensorflow.contrib.tensorboard.plugins import projector

def visualize(model, output_path):
    meta_file = "w2x_metadata.tsv"
    placeholder = np.zeros((len(model.wv.index2word), 100))

    with open(os.path.join(output_path,meta_file), 'wb') as file_metadata:
        for i, word in enumerate(model.wv.index2word):
            placeholder[i] = model[word]

            if word == '':
                print("Emply Line, should replecaed by any thing else, or will cause a bug of tensorboard")
                file_metadata.write("{0}".format('<Empty Line>').encode('utf-8') + b'\n')
            else:
                file_metadata.write("{0}".format(word).encode('utf-8') + b'\n')

    # define the model without training
    sess = tf.InteractiveSession()

    embedding = tf.Variable(placeholder, trainable = False, name = 'w2x_metadata')
    tf.global_variables_initializer().run()

    saver = tf.train.Saver()
    writer = tf.summary.FileWriter(output_path, sess.graph)

    # adding into projector
    config = projector.ProjectorConfig()
    embed = config.embeddings.add()
    embed.tensor_name = 'w2x_metadata'
    embed.metadata_path = meta_file

    # Specify the width and height of a single thumbnail.
    projector.visualize_embeddings(writer, config)
    saver.save(sess, os.path.join(output_path,'w2x_metadata.ckpt'))
    print('Run `tensorboard --logdir={0}` to run visualize result on tensorboard'.format(output_path))

if __name__ == "__main__":
    try:
        model_path = "w2v_model.model"
        output_path  = "tensorboard"
    except:
        print("Please provide model path and output path")
    model = Word2Vec.load(model_path)
    visualize(model, output_path)

我在笔记本电脑上的结果: picture

0 个答案:

没有答案