Keras:如何在LSTM模型中显示注意力权重

时间:2018-09-03 14:50:37

标签: python keras lstm text-classification attention-model

我使用带有关注层的LSTM创建了文本分类模型。我的模型做得很好,效果很好,但是我无法在评论(输入文本)中显示注意力权重和每个单词的重要性/注意力。 用于该模型的代码是:

def dot_product(x, kernel):
   if K.backend() == 'tensorflow':
       return K.squeeze(K.dot(x, K.expand_dims(kernel)),axis=-1)
   else:
       return K.dot(x, kernel)

class AttentionWithContext(Layer):
    """
Attention operation, with a context/query vector, for temporal data.

"Hierarchical Attention Networks for Document Classification"
by using a context vector to assist the attention
# Input shape
    3D tensor with shape: (samples, steps, features).
# Output shape
    2D tensor with shape: (samples, features).
How to use:
Just put it on top of an RNN Layer (GRU/LSTM/SimpleRNN) with return_sequences=True.
The dimensions are inferred based on the output shape of the RNN.
Note: The layer has been tested with Keras 2.0.6
Example:
    model.add(LSTM(64, return_sequences=True))
    model.add(AttentionWithContext())
    # next add a Dense layer (for classification/regression) or whatever
     """

def __init__(self,
             W_regularizer=None, u_regularizer=None, b_regularizer=None,
             W_constraint=None, u_constraint=None, b_constraint=None,
             bias=True, **kwargs):

    self.supports_masking = True
    self.init = initializers.get('glorot_uniform')

    self.W_regularizer = regularizers.get(W_regularizer)
    self.u_regularizer = regularizers.get(u_regularizer)
    self.b_regularizer = regularizers.get(b_regularizer)

    self.W_constraint = constraints.get(W_constraint)
    self.u_constraint = constraints.get(u_constraint)
    self.b_constraint = constraints.get(b_constraint)

    self.bias = bias
    super(AttentionWithContext, self).__init__(**kwargs)

def build(self, input_shape):
    assert len(input_shape) == 3

    self.W = self.add_weight((input_shape[-1], input_shape[-1],),
                             initializer=self.init,
                             name='{}_W'.format(self.name),
                             regularizer=self.W_regularizer,
                             constraint=self.W_constraint)
    if self.bias:
        self.b = self.add_weight((input_shape[-1],),
                                 initializer='zero',
                                 name='{}_b'.format(self.name),
                                 regularizer=self.b_regularizer,
                                 constraint=self.b_constraint)

    self.u = self.add_weight((input_shape[-1],),
                             initializer=self.init,
                             name='{}_u'.format(self.name),
                             regularizer=self.u_regularizer,
                             constraint=self.u_constraint)

    super(AttentionWithContext, self).build(input_shape)

def compute_mask(self, input, input_mask=None):
    # do not pass the mask to the next layers
    return None

def call(self, x, mask=None):
    uit = dot_product(x, self.W)

    if self.bias:
        uit += self.b

    uit = K.tanh(uit)
    ait = dot_product(uit, self.u)

    a = K.exp(ait)

    # apply mask after the exp. will be re-normalized next
    if mask is not None:
        # Cast the mask to floatX to avoid float64 upcasting in theano
        a *= K.cast(mask, K.floatx())

    # in some cases especially in the early stages of training the sum may be almost zero
    # and this results in NaN's. A workaround is to add a very small positive number ε to the sum.
    # a /= K.cast(K.sum(a, axis=1, keepdims=True), K.floatx())
    a /= K.cast(K.sum(a, axis=1, keepdims=True) + K.epsilon(), K.floatx())

    a = K.expand_dims(a)
    weighted_input = x * a
    return K.sum(weighted_input, axis=1)

def compute_output_shape(self, input_shape):
    return input_shape[0], input_shape[-1]


EMBEDDING_DIM=100
max_seq_len=118
bach_size = 256
num_epochs=50
from keras.models import Model
from keras.layers import Dense, Embedding, Input
from keras.layers import LSTM, Bidirectional, Dropout


def BidLstm():
    #inp = Input(shape=(118,100))
    #x = Embedding(max_features, embed_size, weights=[embedding_matrix],
              #trainable=False)(inp)
     model1=Sequential()
     model1.add(Dense(512,input_shape=(118,100)))
    model1.add(Activation('relu'))
    #model1.add(Flatten()) 
    #model1.add(BatchNormalization(input_shape=(100,)))
    model1.add(Bidirectional(LSTM(100, activation="relu",return_sequences=True)))
    model1.add(Dropout(0.1))
    model1.add(TimeDistributed(Dense(200)))
    model1.add(AttentionWithContext())
    model1.add(Dropout(0.25))
    model1.add(Dense(4, activation="softmax"))
    model1.compile(loss='sparse_categorical_crossentropy', optimizer='adam',
              metrics=['accuracy'])
    model1.summary()
    return model1

4 个答案:

答案 0 :(得分:1)

您可以使用自定义图层的get_weights()方法来获取所有权重的列表。您可以找到更多信息here

您需要在模型创建期间对代码进行以下修改:

model1.add(TimeDistributed(Dense(200)))
atn = AttentionWithContext()
model1.add(atn)

然后在训练后,只需使用:

atn.get_weights()[index]

提取权重矩阵W作为numpy数组(我认为index应该设置为0,但是您必须自己尝试一下) 。然后,您可以使用pyplot的{​​{1}} / imshow method来显示矩阵。

答案 1 :(得分:1)

请在此处查看github存储库:https://github.com/FlorisHoogenboom/keras-han-for-docla

首先在关注层中明确定义权重计算 第二步提取前一层的输出和关注层权重,然后将其乘以单词Attent weights

答案 2 :(得分:0)

阅读了上面的综合答案之后,我终于了解了如何提取注意力层的权重。总的来说,@ Li Xiang和@Okorimi Manoury的想法都是正确的。对于@Okorimi Manoury的代码段,来自以下链接:Textual attention visualization

现在,让我逐步说明该过程:

(1)。您应该有一个训练有素的模型,您需要加载模型并提取注意层的权重。 要提取某些图层权重,可以使用model.summary()来检查模型架构。然后,您可以使用:

layer_weights = model.layers[3].get_weights() #suppose your attention layer is the third layer

layer_weights是一个列表,例如,对于HAN attention的单词级关注,layer_weights的列表具有三个元素:W,b和u。 换句话说,layer_weights[0] = W, layer_weights[1] = b, and layer_weights[2] = u

(2)。您还需要在关注图层之前获取图层输出。在此示例中,我们需要获取第二层输出。您可以使用以下代码进行操作:

new_model = Model(inputs=model.input, outputs=model.layers[2].output) output_before_att = new_model.predict(x_test_sample) #extract layer output

(3)。检查详细信息:假设您输入的文本段为100个单词,尺寸为300(输入为[100,300]),在第二层之后,尺寸为128。然后,output_before_att的形状为[ 100,128]。相应地,layer_weights[0](W)为[128,128],layer_weights[1](b)为[1,128],layer_weights[2](u)为[1,128]。然后,我们需要以下代码:

eij = np.tanh(np.dot(output_before_att, layer_weights[0]) + layer_weights[1]) #Eq.(5) in the paper

eij = np.dot(eij, layer_weights[2]) #Eq.(6)

eij = eij.reshape((eij.shape[0], eij.shape[1])) # reshape the vector

ai = np.exp(eij) #Eq.(6)

weights = ai / np.sum(ai) # Eq.(6)

weights是一个列表(100维),每个元素都是100个输入单词的注意权重(重要性)。之后,您可以可视化注意权重。

希望我的解释可以为您提供帮助。

答案 3 :(得分:-1)

谢谢您的编辑。 您的解决方案返回注意层的权重,但是我正在寻找单词权重。

我找到了解决此问题的其他方法:

1.define函数来计算注意力权重:

def cal_att_weights(output, att_w):
#if model_name == 'HAN':
eij = np.tanh(np.dot(output[0], att_w[0]) + att_w[1])
eij = np.dot(eij, att_w[2])
eij = eij.reshape((eij.shape[0], eij.shape[1]))
ai = np.exp(eij)
weights = ai / np.sum(ai)
return weights
from keras import backend as K
sent_before_att = K.function([model1.layers[0].input,K.learning_phase()],  [model1.layers[2].output])
sent_att_w = model1.layers[5].get_weights()
test_seq=np.array(userinp)
test_seq=np.array(test_seq).reshape(1,118,100)
out = sent_before_att([test_seq, 0])