我试图在此代码中测试注意机制(基于MajorTal的工作):
def generate_model(output_len, chars=None):
"""Generate the model"""
print('Build model...')
chars = chars or CHARS
model = Sequential()
# "Encode" the input sequence using an RNN, producing an output of hidden_size
# note: in a situation where your input sequences have a variable length,
# use input_shape=(None, nb_feature).
for layer_number in range(CONFIG.input_layers):
model.add(LSTM(CONFIG.hidden_size, kernel_initializer=CONFIG.initialization,
return_sequences=layer_number + 1 < CONFIG.input_layers, input_shape=(None, len(chars))))
model.add(Dropout(CONFIG.amount_of_dropout))
# For the decoder's input, we repeat the encoded input for each time step
model.add(RepeatVector(output_len))
# The decoder RNN could be multiple layers stacked or a single layer
for _ in range(CONFIG.output_layers):
model.add(LSTM(CONFIG.hidden_size, return_sequences=True, kernel_initializer=CONFIG.initialization))
model.add(Dropout(CONFIG.amount_of_dropout))
# For each of step of the output sequence, decide which character should be chosen
model.add(TimeDistributed(Dense(len(chars), kernel_initializer=CONFIG.initialization)))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
有人可以让我知道如何为注意机制替换此实现的解码器吗? 提前谢谢。