我发现了Frequency Domain representation of Homomorphic Filter的各种公式。我正在使用以下之一:
D(u, v) is在哪里:
我已经按照与FFT Gabor Filter相同的源代码模式实现了它。
源代码
private Array2d<Complex> HomoMorphicFilterFft(double M, double N, double yH, double yL, double c, double D0)
{
Array2d<Complex> kernel = new Array2d<Complex>((int)M, (int)N);
for (double y = 0; y < N; y++)
{
double v = y / N;
for (double x = 0; x < M; x++)
{
double u = x / M;
double kw = HMFft(u, v, M, N, yH, yL, c, D0);
kernel[(int)x, (int)y] = new Complex(kw, 0);
}
}
return kernel;
}
private double HMFft(double u, double v, double M, double N, double yH, double yL, double c, double D0)
{
double p = u - M / 2;
double q = v - N / 2;
double Duv = Math.Sqrt(p * p - q * q);
double d = (Duv / D0) * (Duv / D0);
double e = Math.Exp((-1) * c * d);
double homo = (yH - yL) * (1-e) + yL;
return homo;
}
}
内核公式正在生成 NaN
。
这次我做错了什么?
更新:我听了Duurt的回答,却没有输出:
然后我在源代码中做了一些修改:
Array2d<double> dOutput = Rescale2d.Rescale(DataConverter2d.ToDouble(cOutput));
替换为
Array2d<double> dOutput = Rescale2d.Limit(DataConverter2d.ToDouble(cOutput));
然后
Array2d<double> dLimitedKernel = Rescale2d.Limit(dKernel);
替换为
Array2d<double> dLimitedKernel = Rescale2d.Rescale(dKernel);
但是,输出仍然不是预期的输出:
预期输出类似于以下内容(或者是?):
Limit()
和 Rescale()
之间的区别是: Limit()
仅修剪那些超出0-1范围的值。 Rescale()
通过将它们除以数组中的最大值来重新缩放数组中的所有值。
。
源代码
以下是更详细的源代码:
public partial class Form1 : Form
{
public Form1()
{
InitializeComponent();
Bitmap image = DataConverter2d.ReadGray(StandardImage.LenaGray);
Array2d<double> dImage = DataConverter2d.ToDouble(image);
int newWidth = Tools.ToNextPowerOfTwo(dImage.Width);
int newHeight = Tools.ToNextPowerOfTwo(dImage.Height);
double yH = 2;//2;
double yL = 0.5;//0.5;
double c = 0.5;
double D0 = 1;//0.5;
Array2d<Complex> kernel2d = HomoMorphicFilterFft(newWidth, newHeight, yH, yL, c, D0);
dImage.PadTo(newWidth, newHeight);
Array2d<Complex> cImage = DataConverter2d.ToComplex(dImage);
Array2d<Complex> fImage = FourierTransform.ForwardFft(cImage);
// FFT convolution .................................................
Array2d<Complex> fOutput = new Array2d<Complex>(newWidth, newHeight);
for (int x = 0; x < newWidth; x++)
{
for (int y = 0; y < newHeight; y++)
{
fOutput[x, y] = fImage[x, y] * kernel2d[x, y];
}
}
Array2d<Complex> cOutput = FourierTransform.InverseFft(fOutput);
// trims the values to keep them between 0 and 1.
Array2d<double> dOutput = Rescale2d.Limit(DataConverter2d.ToDouble(cOutput));
dOutput.CropBy((newWidth - image.Width) / 2, (newHeight - image.Height) / 2);
Bitmap output = DataConverter2d.ToBitmap(dOutput, image.PixelFormat);
Array2d<Complex> cKernel = FourierTransform.InverseFft(kernel2d);
cKernel = FourierTransform.RemoveFFTShift(cKernel);
Array2d<double> dKernel = DataConverter2d.ToDouble(cKernel);
// Rescales the values to keep them between 0 and 1.
Array2d<double> dLimitedKernel = Rescale2d.Rescale(dKernel);
Bitmap kernel = DataConverter2d.ToBitmap(dLimitedKernel, image.PixelFormat);
pictureBoxExt1.Image = image;
pictureBoxExt2.Image = kernel;
pictureBoxExt3.Image = output;
}
private Array2d<Complex> HomoMorphicFilterFft(double M, double N, double yH, double yL, double c, double D0)
{
Array2d<Complex> kernel = new Array2d<Complex>((int)M, (int)N);
for (double y = 0; y < N; y++)
{
double v = y / N;
for (double x = 0; x < M; x++)
{
double u = x / M;
double kw = HMFft(u, v, M, N, yH, yL, c, D0);
kernel[(int)x, (int)y] = new Complex(kw, 0);
}
}
return kernel;
}
private double HMFft(double u, double v, double M, double N, double yH, double yL, double c, double D0)
{
double p = u - M / 2;
double q = v - N / 2;
double Duv = Math.Sqrt(p * p + q * q);
double d = (Duv / D0) * (Duv / D0);
double e = Math.Exp((-1) * c * d);
double homo = (yH - yL) * (1-e) + yL;
return homo;
}
}
目前仅专注于算法。
答案 0 :(得分:2)
Duv在Sqrt中具有减号,而在公式中具有加号。取负数的Sqrt可以解释您的问题。