我正在尝试编写一个简单的多层感知器来解决纯numpy中的XOR问题。具有2个神经元的单个隐藏层,乙状结肠激活。
我一直在尝试直接翻译算法上的Wikipedia article,并查看大量其他资源,但是我一直无法使反向传播正常工作。我之所以发表这样的消息,是因为我认为这是滥用/误解一些numpy操作的问题,而不是算法本身,但也许不是。
这是完整的可运行程序:
import numpy as np
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
def activation(x): # sigmoid
return 1 / (1 + np.exp(-x))
def activation_d(x): # sigmoid derivative
s = activation(x)
return s * (1 - s)
def cost(y1, y2):
return (np.linalg.norm(y1 - y2) ** 2) / 2
def mlp_train(X, y, n_h, learning_rate=1e-2, max_iterations=10000):
n_i = 1 if len(X.shape) == 1 else len(X[0]) # input neurons count
n_o = 1 if len(y.shape) == 1 else len(y[0]) # output neurons count
h_layer = [np.random.rand(n_i) for i in range(n_h)]
o_layer = [np.random.rand(n_h) for i in range(n_o)]
for iteration in range(max_iterations):
if (iteration % 2000 == 0): print('iteration', iteration)
for j in range(len(X)):
x = X[j]
h = [activation(np.dot(x, n)) for n in h_layer]
o = [activation(np.dot(h, n)) for n in o_layer]
o = np.array(o)
c = cost(o, np.array(y[j]))
a_d = activation_d(x)
o_grad = c * a_d
o_delta = learning_rate * o_grad * h
o_layer += o_delta
h_grad = a_d * np.dot(o_delta, o_layer.T)
h_delta = learning_rate * h_grad * x
h_layer += h_delta
if (iteration % 2000 == 0): print(x, '->', o, 'cost', c)
mlp_train(X, y, n_h=2)
成本根本没有降低,所有输出都收敛到0:
iteration 0
[0 0] -> [0.70755] cost 0.25031025599858575
[0 1] -> [0.74962] cost 0.031344966778714914
[1 0] -> [0.7546] cost 0.030109871312169207
[1 1] -> [0.78708] cost 0.30974627646512554
iteration 2000
[0 0] -> [0.9568] cost 0.45773097730807827
[0 1] -> [0.97965] cost 0.00020711262741391742
[1 0] -> [0.98117] cost 0.00017728427582410072
[1 1] -> [0.99024] cost 0.4902891867523237
iteration 4000
[0 0] -> [0.99691] cost 0.49691698274069973
[0 1] -> [0.99932] cost 2.28713104303751e-07
[1 0] -> [0.99941] cost 1.7196664273121246e-07
[1 1] -> [0.99984] cost 0.4998383598602833
iteration 6000
[0 0] -> [0.9998] cost 0.49980132025306195
[0 1] -> [0.99998] cost 1.587647769449268e-10
[1 0] -> [0.99999] cost 1.0506374041454625e-10
[1 1] -> [1.] cost 0.49999803556631833
iteration 8000
[0 0] -> [0.99999] cost 0.49998771962960453
[0 1] -> [1.] cost 6.768208468242089e-14
[1 0] -> [1.] cost 3.953230074403547e-14
[1 1] -> [1.] cost 0.49999998306930477
答案 0 :(得分:1)
这是一个重新实现但重写的优化,似乎您不了解backpropagation
。迈克尔·尼尔森(Michael Nielsen)的Neural Networks and Deep Learning
详细讨论了反向传播。
import numpy as np
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
def activation(x): # sigmoid
return 1 / (1 + np.exp(-x))
def activation_d(x): # sigmoid derivative
s = activation(x)
return s * (1 - s)
def cost(y1, y2):
return (np.linalg.norm(y1 - y2) ** 2) / 2
def cost_d(y1, y2):
""" Compute MSE loss, gradient
Args:
y1: prediction
y2: target
Returns:
grads: same shape with y1 / y2
"""
# d_sigmoid = sigmoid * (1 - sigmoid)
return np.array(y1 - y2) * (y1 * (1 - y1))
def mlp_train(X, y, n_h, learning_rate=1e-2, max_iterations=10000):
n_i = 1 if len(X.shape) == 1 else len(X[0]) # input neurons count
n_o = 1 if len(y.shape) == 1 else len(y[0]) # output neurons count
# add bias
hw = np.random.randn(n_i, n_h)
hb = np.zeros((1, n_h))
ow = np.random.randn(n_h, n_o)
ob = np.zeros((1, n_o))
for iteration in range(max_iterations):
if iteration % 2000 == 0:
print('iteration', iteration)
for x_i, y_i in zip(X, y):
# forwardprop
x_i = x_i[np.newaxis, :]
hz = np.dot(x_i, hw) + hb # (1, n_h)
ho = activation(hz)
oz = np.dot(ho, ow) + ob # (1, n_o)
oo = activation(oz)
# cost
c = cost(oo, y_i)
# backwardprop
grad_oz = cost_d(oo, y_i) # (1, n_o)
grad_ob = grad_oz
grad_ow = np.dot(ho.T, grad_oz) # (n_h, n_o)
# update
ow -= learning_rate * grad_ow
ob -= learning_rate * grad_ob
grad_h = np.dot(grad_oz, ow.T) # (1, n_h)
grad_hz = grad_h * (ho * (1 - ho))
grad_hb = grad_hz # (1, n_h)
grad_hw = np.dot(x_i.T, grad_hz) # (n_i, n_h)
# update
hw -= learning_rate * grad_hw
hb -= learning_rate * grad_hb
if iteration % 2000 == 0:
print(x_i, '->', oo, 'cost', c)
mlp_train(X, y, n_h=2, max_iterations=int(1e5))
输出:
...
[[1 0]] -> [[0.94364581]] cost 0.0015878973434031022
[[1 1]] -> [[0.04349045]] cost 0.0009457095065652823
iteration 96000
[[0 0]] -> [[0.04870092]] cost 0.0011858898326805463
[[0 1]] -> [[0.95518092]] cost 0.0010043748998508786
[[1 0]] -> [[0.94458789]] cost 0.001535251186790804
[[1 1]] -> [[0.04277648]] cost 0.0009149137866793687
iteration 98000
[[0 0]] -> [[0.04791496]] cost 0.0011479218121198723
[[0 1]] -> [[0.95588406]] cost 0.0009731082050768009
[[1 0]] -> [[0.94548701]] cost 0.0014858330062528543
[[1 1]] -> [[0.04209458]] cost 0.0008859767334115659