我一直在构建一个简单的近似贝叶斯计算应用程序,但遇到了一个问题。我不知道如何正确实施posterior probability。
我的先前:非信息性(均匀分布)
生成模型:使用numpy二项分布进行随机是/否猜测
代码如下:
import numpy as np
import pandas as pd
def pprob():
pass
def generative_model(n_events, p):
return np.random.binomial(n_events, p)
def ABC(n_occured, n_events, n_draws=100000):
prior = pd.Series(np.random.uniform(0, 1, size=n_draws))
sim_data = [generative_model(n_events, p) for p in prior]
posterior = prior[list(map(lambda x: x == n_occured, sim_data))]
posterior_probability = pprob()
ABC(10, 16)
谢谢!
答案 0 :(得分:1)
感谢:this site
我的解决方案的完整代码是:
import math
from scipy import stats
from scipy.special import factorial
from matplotlib import pyplot as plt
def likelihood(theta, n, x):
return (factorial(n) / (factorial(x) * factorial(n - x))) * (theta x) * ((1 - theta) (n - x))
def pprob(prior, posterior, n_occured, n_events):
return pd.Series(map(lambda theta: likelihood(theta, n_events, n_occured), prior))
def generative_model(n_events, p):
return np.random.binomial(n_events, p)
def ABC(n_occured, n_events, n_draws=1000):
prior = pd.Series(sorted(np.random.uniform(0, 1, size=n_draws)))
sim_data = [generative_model(n_events ,p) for p in prior]
posterior = prior[list(map(lambda x: x == n_occured, sim_data))]
posterior_probability = pprob(prior, posterior, n_occured, n_events)
# let's see what we got
f, ax = plt.subplots(1)
ax.plot(prior, posterior_probability)
ax.set_xlabel("Theta")
ax.set_ylabel("Likelihood")
ax.grid()
ax.set_title("Likelihood of Theta for New Campaign")
plt.show()
ABC(10, 16)
让我产生这种可爱的可能性:
]
答案 1 :(得分:0)
我添加了一些更正,因此它将在第一次使用:
import math
from scipy import stats
from scipy.special import factorial
from matplotlib import pyplot as plt
import pandas as pd
import numpy as np
def likelihood(theta, n, x):
return (factorial(n) / (factorial(x) * factorial(n - x))) * (theta ** x) * ((1 - theta) ** (n - x))
def pprob(prior, posterior, n_occured, n_events):
return pd.Series(map(lambda theta: likelihood(theta, n_events, n_occured), prior))
def generative_model(n_events, p):
return np.random.binomial(n_events, p)
def ABC(n_occured, n_events, n_draws=1000):
prior = pd.Series(sorted(np.random.uniform(0, 1, size=n_draws)))
sim_data = [generative_model(n_events ,p) for p in prior]
posterior = prior[list(map(lambda x: x == n_occured, sim_data))]
posterior_probability = pprob(prior, posterior, n_occured, n_events)
# let's see what we got
f, ax = plt.subplots(1)
ax.plot(prior, posterior_probability)
ax.set_xlabel("Theta")
ax.set_ylabel("Likelihood")
ax.grid()
ax.set_title("Likelihood of Theta for New Campaign")
plt.show()
ABC(10, 16)