具有相关性的循环

时间:2018-08-28 09:33:07

标签: r dataframe correlation

Matrix

lus <- read_excel("luse_data.xlsx")
laksepris <- read_excel("laksepris.xlsx")

从数据集“ lus”中删除NA观测值,并删除“ totalsum”行

lus2 <- na.omit(lus)

lus3 <- lus2[-c(10),]

现在的问题是,“ laksepris”的列中有几个月,而“ lus”的行中有几个月

laksepris2 <- laksepris %>%
  spread (Month, Pris)

test <- rbind(setDT(lus3), setDT(laksepris2), fill=TRUE)


test[10,1] <- "Pris pr.kilo"

test_round <- test %>% 
  mutate_if(is.numeric, round, digits = 2)

---------------------------------------------

rearranget_lus <- as.data.frame(t(test_round))

rearranget_lus

删除第一行,然后重命名列:

lus_1 <- rearranget_lus[-c(1),]

names (lus_1) [1] <- "Finmark"

names (lus_1) [2] <- "Troms"

names (lus_1) [3] <- "Nordland"

names (lus_1) [4] <- "Nord-Trondelag"

names (lus_1) [5] <- "Sor-Trondelag"

names (lus_1) [6] <- "More og Romsdal"

names (lus_1) [7] <- "Sogn og Fjordane"

names (lus_1) [8] <- "Hordaland"

names (lus_1) [9] <- "Rogaland og Agder"

names (lus_1) [10] <- "Pris pr.kilo"

我刚刚开始使用R,因此我想知道如何在“ pris pr.kilo”中的值与“ Finmark”列中的值之间进行关联。接下来,我还想循环执行此操作,以便循环运行“ pris.pr.kilo”与所有其他列之间的相关性。

有人建议如何做吗?

1 个答案:

答案 0 :(得分:0)

尽管您的问题对我来说还不太清楚,但是如果我理解正确的话,

问题1:矩阵列的相关性。

请尝试cor()中的R。这是一个内置功能。阅读用例herehere

让我知道这是否适合您的情况。您无需每次都遍历以收集相关值。

示例:

让我们从内置的R数据库中加载数据。

>data(mtcars)

>head(mtcars)
                   mpg cyl disp  hp drat    wt  qsec vs am gear carb
Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
>cor(mtcars,method='pearson')
        mpg        cyl       disp         hp        drat         wt
mpg   1.0000000 -0.8521620 -0.8475514 -0.7761684  0.68117191 -0.8676594
cyl  -0.8521620  1.0000000  0.9020329  0.8324475 -0.69993811  0.7824958
disp -0.8475514  0.9020329  1.0000000  0.7909486 -0.71021393  0.8879799
hp   -0.7761684  0.8324475  0.7909486  1.0000000 -0.44875912  0.6587479
drat  0.6811719 -0.6999381 -0.7102139 -0.4487591  1.00000000 -0.7124406
wt   -0.8676594  0.7824958  0.8879799  0.6587479 -0.71244065  1.0000000
qsec  0.4186840 -0.5912421 -0.4336979 -0.7082234  0.09120476 -0.1747159
vs    0.6640389 -0.8108118 -0.7104159 -0.7230967  0.44027846 -0.5549157
am    0.5998324 -0.5226070 -0.5912270 -0.2432043  0.71271113 -0.6924953
gear  0.4802848 -0.4926866 -0.5555692 -0.1257043  0.69961013 -0.5832870
carb -0.5509251  0.5269883  0.3949769  0.7498125 -0.09078980  0.4276059
        qsec         vs          am       gear        carb
mpg   0.41868403  0.6640389  0.59983243  0.4802848 -0.55092507
cyl  -0.59124207 -0.8108118 -0.52260705 -0.4926866  0.52698829
disp -0.43369788 -0.7104159 -0.59122704 -0.5555692  0.39497686
hp   -0.70822339 -0.7230967 -0.24320426 -0.1257043  0.74981247
drat  0.09120476  0.4402785  0.71271113  0.6996101 -0.09078980
wt   -0.17471588 -0.5549157 -0.69249526 -0.5832870  0.42760594
qsec  1.00000000  0.7445354 -0.22986086 -0.2126822 -0.65624923
vs    0.74453544  1.0000000  0.16834512  0.2060233 -0.56960714
am   -0.22986086  0.1683451  1.00000000  0.7940588  0.05753435
gear -0.21268223  0.2060233  0.79405876  1.0000000  0.27407284
carb -0.65624923 -0.5696071  0.05753435  0.2740728  1.00000000