lus <- read_excel("luse_data.xlsx")
laksepris <- read_excel("laksepris.xlsx")
从数据集“ lus”中删除NA观测值,并删除“ totalsum”行
lus2 <- na.omit(lus)
lus3 <- lus2[-c(10),]
现在的问题是,“ laksepris”的列中有几个月,而“ lus”的行中有几个月
laksepris2 <- laksepris %>%
spread (Month, Pris)
test <- rbind(setDT(lus3), setDT(laksepris2), fill=TRUE)
test[10,1] <- "Pris pr.kilo"
test_round <- test %>%
mutate_if(is.numeric, round, digits = 2)
rearranget_lus <- as.data.frame(t(test_round))
rearranget_lus
删除第一行,然后重命名列:
lus_1 <- rearranget_lus[-c(1),]
names (lus_1) [1] <- "Finmark"
names (lus_1) [2] <- "Troms"
names (lus_1) [3] <- "Nordland"
names (lus_1) [4] <- "Nord-Trondelag"
names (lus_1) [5] <- "Sor-Trondelag"
names (lus_1) [6] <- "More og Romsdal"
names (lus_1) [7] <- "Sogn og Fjordane"
names (lus_1) [8] <- "Hordaland"
names (lus_1) [9] <- "Rogaland og Agder"
names (lus_1) [10] <- "Pris pr.kilo"
我刚刚开始使用R,因此我想知道如何在“ pris pr.kilo”中的值与“ Finmark”列中的值之间进行关联。接下来,我还想循环执行此操作,以便循环运行“ pris.pr.kilo”与所有其他列之间的相关性。
有人建议如何做吗?
答案 0 :(得分:0)
尽管您的问题对我来说还不太清楚,但是如果我理解正确的话,
请尝试cor()
中的R
。这是一个内置功能。阅读用例here或here
让我知道这是否适合您的情况。您无需每次都遍历以收集相关值。
让我们从内置的R
数据库中加载数据。
>data(mtcars)
>head(mtcars)
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
>cor(mtcars,method='pearson')
mpg cyl disp hp drat wt
mpg 1.0000000 -0.8521620 -0.8475514 -0.7761684 0.68117191 -0.8676594
cyl -0.8521620 1.0000000 0.9020329 0.8324475 -0.69993811 0.7824958
disp -0.8475514 0.9020329 1.0000000 0.7909486 -0.71021393 0.8879799
hp -0.7761684 0.8324475 0.7909486 1.0000000 -0.44875912 0.6587479
drat 0.6811719 -0.6999381 -0.7102139 -0.4487591 1.00000000 -0.7124406
wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 1.0000000
qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 -0.1747159
vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 -0.5549157
am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 -0.6924953
gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 -0.5832870
carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980 0.4276059
qsec vs am gear carb
mpg 0.41868403 0.6640389 0.59983243 0.4802848 -0.55092507
cyl -0.59124207 -0.8108118 -0.52260705 -0.4926866 0.52698829
disp -0.43369788 -0.7104159 -0.59122704 -0.5555692 0.39497686
hp -0.70822339 -0.7230967 -0.24320426 -0.1257043 0.74981247
drat 0.09120476 0.4402785 0.71271113 0.6996101 -0.09078980
wt -0.17471588 -0.5549157 -0.69249526 -0.5832870 0.42760594
qsec 1.00000000 0.7445354 -0.22986086 -0.2126822 -0.65624923
vs 0.74453544 1.0000000 0.16834512 0.2060233 -0.56960714
am -0.22986086 0.1683451 1.00000000 0.7940588 0.05753435
gear -0.21268223 0.2060233 0.79405876 1.0000000 0.27407284
carb -0.65624923 -0.5696071 0.05753435 0.2740728 1.00000000