假设我有一个熊猫数据框,其中包含列“ a”,“ b”,“ c”,“ d”,“ e”,“ f”,“ g”。我想通过“ g”选择列“ a”,“ b”和“ e”。我不想通过“ g”将列名“ e”显式指定为“ e”,“ f”,“ g”,而是使用类似“ e”:“ g”的名称。有没有可能将这些“ a”,“ b”和“ e”:“ g”组合在一起?
我现在拥有的是使用pd.concat()
pd.concat([df[:, 'a', 'b']), df[:, ['e': 'g']]], axis = 1)
答案 0 :(得分:2)
使用RegEx:
df.loc[:,df.columns.str.match('[ab]|[e-g]')]
答案 1 :(得分:2)
df = pd.DataFrame({'a':list('abcdef'),
'b':[4,5,4,5,5,4],
'c':[7,8,9,4,2,3],
'd':[1,3,5,7,1,0],
'e':[5,3,6,9,2,4],
'f':list('aaabbb'),
'g':[0,3,5,7,1,0],
'h':[2,30,50,7,1,0],})
df = df.filter(regex='[ab]|[e-g]')
print (df)
a b e f g
0 a 4 5 a 0
1 b 5 3 a 3
2 c 4 6 a 5
3 d 5 9 b 7
4 e 5 2 b 1
5 f 4 4 b 0
另一种解决方案:
rng = df.loc[:, 'e': 'g'].columns.tolist()
#alternative
#rng = df.columns[df.columns.get_loc('e'): df.columns.get_loc('g') + 1].tolist()
cols = ['a','b'] + rng
df = df[cols]
print (df)
a b e f g
0 a 4 5 a 0
1 b 5 3 a 3
2 c 4 6 a 5
3 d 5 9 b 7
4 e 5 2 b 1
5 f 4 4 b 0
答案 2 :(得分:1)
基于官方pandas documentation,您应该能够做到这一点!选择df['e':'g']
。