对列进行排名并选择列名称

时间:2016-01-23 08:54:26

标签: python pandas

如果我有桌子:

a   b   c
15  15  5
20  10  7
25  30  9

并希望做两件事1)挑选出轴上具有最高值的列并将其分配给列2)获取值并将其分配给另一列,例如:

a   b   c   1st 1st_value   2nd 2nd_value   3rd 3rd_value
15  15  5   a/b 15  c   5   NaN NaN
20  10  7   a   20  b   10  c   7
25  30  9   b   30  a   25  c   9

这可能吗?

2 个答案:

答案 0 :(得分:1)

df_sorted = df.apply(lambda row: sorted(set(row), reverse=True) + [None]*(len(row)-len(set(row))), axis=1)

>>> df_sorted
    a   b   c
0  15   5 NaN
1  20  10   7
2  30  25   9

如果需要,重命名列:

df_sorted.rename(columns={'a': '1st_value', 'b': '2nd_value', 'c': '3rd_value'}, inplace=True)

>>> df_sorted
   1st_value  2nd_value  3rd_value
0         15          5        NaN
1         20         10          7
2         30         25          9

Concat原创并根据需要排序:

df_concat = pd.concat([df, df_sorted], axis=1)

>>> df_concat
    a   b  c  1st_value  2nd_value  3rd_value
0  15  15  5         15          5        NaN
1  20  10  7         20         10          7
2  25  30  9         30         25          9

答案 1 :(得分:1)

我可以建议你这样解决:

import pandas as pd
import numpy as np

df = pd.DataFrame([{'a': 15, 'b': 15, 'c': 5}, {'a': 20, 'b': 10, 'c': 7}, {'a': 25, 'b': 30, 'c': 9}])
ext = {0: 'st', 1: 'nd', 2: 'rd'}
cols = df.columns


def make_ranking(row, rank=0, is_value=False):
    values = list(row[cols])
    sorted_values = sorted(set(values), reverse=True)
    value = sorted_values[rank] if len(sorted_values) > rank else np.nan
    if not is_value:
        items = [k for k, v in enumerate(values) if v == value]
        value = '/'.join([cols[item] for item in items]) or np.nan
    return value

for i in range(len(cols)):
    df[str(i+1)+ext[i]] = df.apply(make_ranking, args=(i, False, ), axis=1)
    df[str(i+1)+ext[i]+'_value'] = df.apply(make_ranking, args=(i, True, ), axis=1)

print(df)

输出:

    a   b  c  1st  1st_value 2nd  2nd_value  3rd  3rd_value
0  15  15  5  a/b         15   c          5  NaN        NaN
1  20  10  7    a         20   b         10    c          7
2  25  30  9    b         30   a         25    c          9