这是我要在C ++中解决的问题;
给出一个以度 d-1 指定的多项式 A(x),其系数为a0,a1,a2,a3 ... ad-1。假设 a 是这些系数的d维向量。给定一个整数n输出矢量DFT(a,n),其中DFT(a,n)定义为see here。
我的代码在这里
#include<bits/stdc++.h>
#include<complex>
#include <iomanip>
using namespace std;
void DfT(vector<double> &a, vector<double> &b, int n, int d){
vector<double> ans1, ans2;
for(int i=0;i<n;i++){
double k=(M_PI*2.00000)/n;
k=round(k*1e5)/1e5;
//cout<<k<<" ";
double r=cos(i*k), im=sin(i*k);
r=round(r*1e5)/1e5;
im=round(im*1e5)/1e5;
double wr=1,wi=0;
for(int j=0;j<d;j++){
double a1=wr*a[j]-wi*b[j];
a1=round(a1*1e5)/1e5;
double b1=wr*b[j]+wi*a[j];
b1=round(b1*1e5)/1e5;
ans1.push_back(a1);
ans2.push_back(b1);
double temp=wr;
wr=wr*r-wi*im;
wr=round(wr*1e5)/1e5;
wi=temp*im+r*wi;
wi=round(wi*1e5)/1e5;
}
}
for(auto &it:ans1)cout<<fixed<<setprecision(5)<<it<<" "<<endl;
for(auto &it:ans2)cout<<fixed<<setprecision(5)<<it<<" ";
}
int main(){
int d,n; //d -1 is the degree of the polynomial A(x)
cin>>d;
vector<double> a,b;
for(int i=0;i<d;i++){
double t;
cin>>t;
a.push_back(t); // the real part of polynomial
}
for(int i=0;i<d;i++){
double t;
cin>>t;
b.push_back(t); // imaginary part of polynomial
}
cin>>n; // n is surely power of 2 and we find
//nth root of infinity and put the value of roots in polynomial A(x) as x.
FfT(a,b,n,d); //we have to output the value of polynomial ie A(w1),A(w2).. with precision to 5 decimal places
return 0;
}
逻辑似乎很好,但看起来答案的准确性也有所下降。仅少数测试用例通过了。 请帮助