我目前正在尝试利用已经受过训练的DL模型的中间层作为对给定输入的嵌入。下面的代码已经可以用于获取所需的图层,但是对于大量输入而言,迭代地执行此操作非常慢。
model = load_model('model.h5')
inp = model.input
outputs = [layer.output for layer in model.layers]
functors = [K.function([inp]+ [K.learning_phase()], [out]) for out in outputs]
def text2tensor(text):
"""Convert string to tensor"""
tensor = tokenizer.texts_to_sequences([text])
tensor = pad_sequences(tensor, maxlen=10, padding='pre')
return tensor
def get_embedding(tensor, at_layer):
"""Get output at particular layer in network """
functors = [K.function([inp]+ [K.learning_phase()], [out]) for out in outputs][at_layer-1]
layer_outs = [func([tensor, 1.]) for func in [functors]]
return layer_outs[0][0]
texts = ['this is my first text',
'this is my second text',
'this is my third text',
.....nth text]
embeddings = np.empty((0,256))
for t in texts:
tensor = text2tensor(t)
embedding = get_embedding(tensor,at_layer=4)
embeddings = np.append(embeddings,[embedding[0]],axis=0)
我如何利用批处理,而不必一个接一个地执行此操作?使用上述实现速度非常慢,但是可以。
答案 0 :(得分:1)
除了我在评论中提到的要点外,建议您创建一个模型,而不要创建一个后端函数:
input_tensor = Input(shape=(10,)) # assuming maxlen=10
new_model = Model(input_tensor, my_desired_layer.output)
然后,首先对文本数据进行预处理以形成输入数组(即下面的my_data
),然后使用predict
方法并将一个batch_size
参数传递给它以利用批处理:
out = new_model.predict(my_data) # the default batch size is 32