嗨,我正在尝试构建一个自平衡机器人,因此我需要加速度计和陀螺仪,但无法设置加速度计的最大输出频率。目前,在我的代码中,获取角度所需的时间几乎为28ms,我认为这太多了。您有什么建议要解决吗? 我附加的代码是我用来控制机器人的代码,这就是为什么代码很长的原因,但是用于与传感器通信的功能在文件的开头,而在文件的结尾使用这些功能的任务(StartSampler)。我正在使用带有FreeRtos的核stm32f401re板。
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* This notice applies to any and all portions of this file
* that are not between comment pairs USER CODE BEGIN and
* USER CODE END. Other portions of this file, whether
* inserted by the user or by software development tools
* are owned by their respective copyright owners.
*
* Copyright (c) 2018 STMicroelectronics International N.V.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted, provided that the following conditions are met:
*
* 1. Redistribution of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of other
* contributors to this software may be used to endorse or promote products
* derived from this software without specific written permission.
* 4. This software, including modifications and/or derivative works of this
* software, must execute solely and exclusively on microcontroller or
* microprocessor devices manufactured by or for STMicroelectronics.
* 5. Redistribution and use of this software other than as permitted under
* this license is void and will automatically terminate your rights under
* this license.
*
* THIS SOFTWARE IS PROVIDED BY STMICROELECTRONICS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS, IMPLIED OR STATUTORY WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
* PARTICULAR PURPOSE AND NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY
* RIGHTS ARE DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT
* SHALL STMICROELECTRONICS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32f4xx_hal.h"
#include "cmsis_os.h"
/* USER CODE BEGIN Includes */
#include "math.h"
#include "string.h"
#include "stdlib.h"
/* USER CODE END Includes */
/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart6;
DMA_HandleTypeDef hdma_usart1_rx;
DMA_HandleTypeDef hdma_usart6_rx;
osThreadId FilterHandle;
osThreadId ControllerHandle;
osThreadId ActuatorHandle;
osThreadId StampaHandle;
osThreadId SetPIDHandle;
osThreadId SamplerHandle;
osMutexId i2c_mutexHandle;
osMutexId uart_mutexHandle;
osMutexId sample_mutexHandle;
osMutexId pid_mutexHandle;
osMutexId angle_mutexHandle;
osMutexId voltage_mutexHandle;
osMutexId controller_mutexHandle;
/* USER CODE BEGIN PV */
/* Private variables ---------------------------------------------------------*/
#define T 3 //period 3 ms
#define T_control 0.003 //period expressed in seconds
#define N 1 //number of samples
#define adxl_address 0x53<<1
#define ITG3205_ADDRESS 0x68<<1
#define GRADSEC_TO_RAD 0.0174533 //°/s to radiant
#define RANGE 0.0 //range
#define MAX_CONTROL 6 //max voltage to motors
#define CYCLE_CALIB 2000
#define SOFT_START 50
float OFFSET=0;
uint8_t acc_id, gyro_id;
int cnt=0;
float OFFSET_ADX=-0.00196964317;
float OFFSET_GYRO=2.62438679;
float X_OFF=0;
float Y_OFF=0;
float Z_OFF=0;
float Y_GYR_OFF=-9.64649963;
int16_t x_u, y_u, z_u;
float x, y, z, y_g;
int16_t y_gyro;
int16_t y_gyro_old;
uint8_t uart_buff[1];
uint8_t lsm6ds0_id;
float acc_pitch, gyr_pitch;
char x_bt[4];
char y_bt[4];
char z_bt[4];
char yg_bt[4];
int m=0;
int fine_pid=0;
int cr[4]={0,0,0,0};
//////WCET///////////
long unsigned int time[4];
long unsigned int time_sampler[4];
long unsigned int time_controller[4];
long unsigned int time_actuator[4];
long unsigned int time_stampa[4];
float adxl_pitch[N], itg3205_pitch[N];
float avg_adxl_pitch, avg_itg3205_pitch;
float send_to_controller[2];
float send_to_actuator[2];
//CONTROLLER VARIABLE
double error, error_der, error_int, error_old;
double control;
double position=0, position_old=0;
double KP=0;
double KI=0;
double KD=0;
double p_off=0;//0.072;
double n_off=0;//0.00085;
double local_avg_adxl_pitch, local_avg_itg3205_pitch;
//BLUETOOTH COMMUNICATION
uint8_t buff_rec[14+6+3]; //14 se il pid è costituito da 3 cifre intere 20 se p,i e d hanno due cifre decimali + 3 per i punti da saltare delle cifre decimali
char stamp[3];
uint8_t pid_vector[100];
int count=0;
uint32_t temp[10];
//CHECK SAMPLING TIME
float sensor_time;
TickType_t start_time=0;
TickType_t finish_time=0;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART6_UART_Init(void);
static void MX_I2C1_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM3_Init(void);
void StarFilter(void const * argument);
void StartController(void const * argument);
void StartActuator(void const * argument);
void StartStampa(void const * argument);
void StartSetPID(void const * argument);
void StartSampler(void const * argument);
void HAL_TIM_MspPostInit(TIM_HandleTypeDef *htim);
/* USER CODE BEGIN PFP */
/* Private function prototypes -----------------------------------------------*/
uint8_t data_reg[22];
uint8_t data_gyro;
void adxl_write(uint8_t reg, uint8_t value){
uint8_t data[2];
data[0]=reg;
data[1]=value;
HAL_I2C_Master_Transmit(&hi2c1, adxl_address, data, 2, 10);
temp[0]=temp[0]+1;
}
void adxl_read(uint8_t reg, uint8_t numberOfByte){
HAL_I2C_Mem_Read(&hi2c1, adxl_address, reg, 1, data_reg, numberOfByte, 100);
temp[1]=temp[1]+1;
}
void adxl_init(void ){
adxl_read(0x00, 1);
acc_id=data_reg[0];
adxl_write(0x2d, 0x00); //reset all bits
//aggiunto per problemi sui registri alti dei sensori
adxl_write(0x2c, 0x0F);
adxl_write(0x2d, 0x08); //measure bit-1, wake up 0, 0 at 8Mhz
adxl_write(0x31, 0x03); //+-16g range 0x01 come secondo parametro per 4g range
adxl_write(0x38, 0x80); //bypass filter fifo
}
void adxl_get_values(void){
temp[2]=temp[2]+1;
adxl_read(0x32,6);
//l'aggiunta del -0.04 o -0.08 è per l'offset del sensore
x_u=((data_reg[1]<<8) | data_reg[0])-0.04;//+1.74;
y_u=((data_reg[3]<<8) | data_reg[2])-0.04;//+1.74;
z_u=((data_reg[5]<<8) | data_reg[4])-0.08;//-3.73;
x=x_u*0.0312; //31.2/1000(mg) to scale to g
y=y_u*0.0312; //31.2/1000(mg) to scale to g
z=z_u*0.0312; //31.2/1000(mg) to scale to g
sprintf(x_bt, "%f", x);
sprintf(y_bt, "%f", y);
sprintf(y_bt, "%f", z);
}
float adxl_get_roll(void){
adxl_get_values();
return atan2(y, sqrt(x*x+z*z))*57.32484;
}
float adxl_get_pitch_rad(void){
adxl_get_values();
return atan2(x, sqrt(y*y+z*z));
}
float adxl_get_pitch(void){
return (adxl_get_pitch_rad()-OFFSET)*57.32484;
}
void adxl_calib(void){
for(int i=0; i<CYCLE_CALIB; i++){
OFFSET=adxl_get_pitch_rad();
HAL_Delay(T/N);
}
OFFSET/=CYCLE_CALIB;
}
void itg3205_write(uint8_t reg, uint8_t value){
uint8_t data[2];
data[0]=reg;
data[1]=value;
HAL_I2C_Master_Transmit(&hi2c1, ITG3205_ADDRESS, data, 2, 10);
}
void itg3205_read(uint8_t reg, uint8_t numberOfByte){
HAL_I2C_Mem_Read(&hi2c1, ITG3205_ADDRESS, reg, 1, &data_gyro, numberOfByte, 100);
}
void itg3205_init(void){
uint8_t value[2];
itg3205_read(0x00, 1);
gyro_id=data_gyro;
//SET FULL SCALE +- 2000°/s
itg3205_write(0x16, 0x18);
}
float itg3205_get_pitch(void){
itg3205_read(0x20, 1);
y_gyro=data_gyro;
itg3205_read(0x1F, 1);
y_gyro |=(data_gyro<<8);
return (y_gyro/14.375);
}
void itg3205_calib(void){
for(int i=0; i<CYCLE_CALIB; i++){
OFFSET_GYRO+=itg3205_get_pitch();
HAL_Delay(20);
}
OFFSET_GYRO/=CYCLE_CALIB;
}
void acc_calib(void){
OFFSET_ADX=0;
for(int i=0; i<CYCLE_CALIB; i++){
OFFSET_ADX+=adxl_get_pitch_rad();
HAL_Delay(T/N);
}
OFFSET_ADX/=CYCLE_CALIB;
}
void gyr_calib(void){
OFFSET_GYRO=0;
for(int i=0; i<CYCLE_CALIB; i++){
OFFSET_GYRO+=itg3205_get_pitch();
HAL_Delay(20);
}
OFFSET_GYRO/=CYCLE_CALIB;
}
/* USER CODE END PFP */
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
*
* @retval None
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration----------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USART6_UART_Init();
MX_I2C1_Init();
MX_USART1_UART_Init();
MX_TIM2_Init();
MX_TIM3_Init();
/* USER CODE BEGIN 2 */
//HAL_UART_Receive_DMA(&huart6,buff_rec,14+6+3); //struttura predefinita con 5 valori + punto piu lettere + spazio es 'p100.20 i0.0000 d0.0000'
HAL_UART_Receive_DMA(&huart6,buff_rec, 1);
adxl_init();
itg3205_init();
//acc_axis_calib();
//gyr_axis_calib();
//acc_calib();
//gyr_calib();
HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_2);
__HAL_TIM_SetCompare(&htim2, TIM_CHANNEL_2, 250);
HAL_TIM_Base_Start(&htim3);
/* USER CODE END 2 */
/* Create the mutex(es) */
/* definition and creation of i2c_mutex */
osMutexDef(i2c_mutex);
i2c_mutexHandle = osMutexCreate(osMutex(i2c_mutex));
/* definition and creation of uart_mutex */
osMutexDef(uart_mutex);
uart_mutexHandle = osMutexCreate(osMutex(uart_mutex));
/* definition and creation of sample_mutex */
osMutexDef(sample_mutex);
sample_mutexHandle = osMutexCreate(osMutex(sample_mutex));
/* definition and creation of pid_mutex */
osMutexDef(pid_mutex);
pid_mutexHandle = osMutexCreate(osMutex(pid_mutex));
/* definition and creation of angle_mutex */
osMutexDef(angle_mutex);
angle_mutexHandle = osMutexCreate(osMutex(angle_mutex));
/* definition and creation of voltage_mutex */
osMutexDef(voltage_mutex);
voltage_mutexHandle = osMutexCreate(osMutex(voltage_mutex));
/* definition and creation of controller_mutex */
osMutexDef(controller_mutex);
controller_mutexHandle = osMutexCreate(osMutex(controller_mutex));
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the thread(s) */
/* definition and creation of Filter */
//osThreadDef(Filter, StarFilter, osPriorityRealtime, 0, 128);
//FilterHandle = osThreadCreate(osThread(Filter), NULL);
/* definition and creation of Controller */
osThreadDef(Controller, StartController, osPriorityRealtime, 0, 128);
ControllerHandle = osThreadCreate(osThread(Controller), NULL);
/* definition and creation of Actuator */
osThreadDef(Actuator, StartActuator, osPriorityRealtime, 0, 128);
ActuatorHandle = osThreadCreate(osThread(Actuator), NULL);
/* definition and creation of Stampa */
//osThreadDef(Stampa, StartStampa, osPriorityLow, 0, 128);
//StampaHandle = osThreadCreate(osThread(Stampa), NULL);
/* definition and creation of SetPID */
//osThreadDef(SetPID, StartSetPID, osPriorityLow, 0, 128);
//SetPIDHandle = osThreadCreate(osThread(SetPID), NULL);
/* definition and creation of Sampler */
osThreadDef(Sampler, StartSampler, osPriorityRealtime, 0, 128);
SamplerHandle = osThreadCreate(osThread(Sampler), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* USER CODE BEGIN RTOS_QUEUES */
/* add queues, ... */
/* USER CODE END RTOS_QUEUES */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct;
RCC_ClkInitTypeDef RCC_ClkInitStruct;
/**Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE2);
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = 16;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 84;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 4;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Initializes the CPU, AHB and APB busses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
/**Configure the Systick interrupt time
*/
HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/1000);
/**Configure the Systick
*/
HAL_SYSTICK_CLKSourceConfig(SYSTICK_CLKSOURCE_HCLK);
/* SysTick_IRQn interrupt configuration */
HAL_NVIC_SetPriority(SysTick_IRQn, 15, 0);
}
/* I2C1 init function */
static void MX_I2C1_Init(void)
{
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 400000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* TIM2 init function */
static void MX_TIM2_Init(void)
{
TIM_MasterConfigTypeDef sMasterConfig;
TIM_OC_InitTypeDef sConfigOC;
htim2.Instance = TIM2;
htim2.Init.Prescaler = 84;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 1000;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_PWM_Init(&htim2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 500;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim2, &sConfigOC, TIM_CHANNEL_2) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
HAL_TIM_MspPostInit(&htim2);
}
/* TIM3 init function */
static void MX_TIM3_Init(void)
{
TIM_ClockConfigTypeDef sClockSourceConfig;
TIM_MasterConfigTypeDef sMasterConfig;
htim3.Instance = TIM3;
htim3.Init.Prescaler = 0;
htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
htim3.Init.Period = 65535;
htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* USART1 init function */
static void MX_USART1_UART_Init(void)
{
huart1.Instance = USART1;
huart1.Init.BaudRate = 115200;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/* USART6 init function */
static void MX_USART6_UART_Init(void)
{
huart6.Instance = USART6;
huart6.Init.BaudRate = 9600;
huart6.Init.WordLength = UART_WORDLENGTH_8B;
huart6.Init.StopBits = UART_STOPBITS_1;
huart6.Init.Parity = UART_PARITY_NONE;
huart6.Init.Mode = UART_MODE_TX_RX;
huart6.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart6.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart6) != HAL_OK)
{
_Error_Handler(__FILE__, __LINE__);
}
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream1_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream1_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream1_IRQn);
/* DMA2_Stream2_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream2_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream2_IRQn);
}
/** Configure pins as
* Analog
* Input
* Output
* EVENT_OUT
* EXTI
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4|GPIO_PIN_5, GPIO_PIN_RESET);
/*Configure GPIO pins : PA4 PA5 */
GPIO_InitStruct.Pin = GPIO_PIN_4|GPIO_PIN_5;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);
}
/* USER CODE BEGIN 4 */
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(huart);
/* NOTE: This function Should not be modified, when the callback is needed,
the HAL_UART_TxCpltCallback could be implemented in the user file
*/
///da un'array di numeri sotto forma di caratteri mi porto a un intero a 3cifre
/*
KP=(double)(100*(buff_rec[1]-48)+10*(buff_rec[2]-48)+1*(buff_rec[3]-48)+0.01*(buff_rec[5]-48)+0.001*(buff_rec[6]-48));
KI=(double)(1*(buff_rec[9]-48)+0.1*(buff_rec[11]-48)+0.01*(buff_rec[12]-48)+0.001*(buff_rec[13]-48)+0.0001*(buff_rec[14]-48));
KD=(double)(1*(buff_rec[17]-48)+0.1*(buff_rec[19]-48)+0.01*(buff_rec[20]-48)+0.001*(buff_rec[21]-48)+0.0001*(buff_rec[22]-48));
*/
char delim[]=" ";
if(buff_rec[0]!='\n'){
//ancora devo ricevere l'ultimo carattere
pid_vector[m]=buff_rec[0];
m++;}
else {
//ultimo carattere ricevuto
//creo vettore di pari dimensione e lo riempio
uint8_t *tempo_buffer=malloc(m*sizeof(uint8_t));
strcpy((char *)tempo_buffer,(const char *) pid_vector);
char *ptr = strtok((char *)tempo_buffer, delim);
KP = atof(ptr);
ptr = strtok(NULL, delim);
KI = atof(ptr);
ptr = strtok(NULL, delim);
KD = atof(ptr);
//pulisco i puntatori
free(ptr);
free(tempo_buffer);
for (int k=0; k<=m; k++)
pid_vector[k]=0;
m=0;
}
/*
//per trasformare l'intero p in un arrai di char cosi da stamparlo
if(uart_mutexHandle !=NULL){
if(xSemaphoreTake(uart_mutexHandle, (TickType_t) 5) == pdTRUE){
sprintf(stamp, "%f", KP);
HAL_UART_Transmit(&huart6, (uint8_t *)"P: ", 3,10);
HAL_UART_Transmit(&huart6, (uint8_t *) stamp, 3, 10);
HAL_UART_Transmit(&huart6, (uint8_t *)"\n\r", 2, 10);
sprintf(stamp, "%f", KI);
HAL_UART_Transmit(&huart6, (uint8_t *)"I: ", 3,10);
HAL_UART_Transmit(&huart6, (uint8_t *)stamp, 3, 10);
HAL_UART_Transmit(&huart6, (uint8_t *)"\n\r", 2, 10);
sprintf(stamp, "%f", KD);
HAL_UART_Transmit(&huart6, (uint8_t *)"D: ", 3,10);
HAL_UART_Transmit(&huart6, (uint8_t *)stamp, 3, 10);
HAL_UART_Transmit(&huart6, (uint8_t *)"\n\r", 2, 10);
xSemaphoreGive(uart_mutexHandle);
}
}
vTaskResume(SetPIDHandle);
*/
}
/* USER CODE END 4 */
/* StarFilter function */
void StarFilter(void const * argument)
{
感谢您的帮助