选定行的熊猫数据框的有效平均值

时间:2018-08-21 11:02:36

标签: python python-3.x pandas

我有一个由元组索引和带有float dtype的几列组成的数据框。我想以一种有效的方式平均不同(不一定是连续的)行的值。

我目前的方法是使用itupuples遍历每一行,选择要平均的行,计算平均值并将其存储在新的数据框中。

理想情况下,我想避免使用itertuples并找到矢量化的解决方案以获得更好的性能。该解决方案存在吗?

以下是itertuples方法的代码:

def parameters_list_between_range(parameters: Tuple[int, ...], param_range: Tuple[int, ...],
                                  min_values: Tuple[int, ...]=None, max_values: Tuple[int, ...]=None) -> List[Tuple[int, ...]]:
    """
    Builds a list of parameters that have as center the parameters tuple and reside between +/- (inclusive) the param_range.
    I.e. if parameters = (2, 3, 1) and param_range=(0, 2, 1) it returns a list with all parameters between (2, 1, 0) and (2, 5, 2).
    If min_values or max_values is provided then it restricts the results to parameters that do not surpass those limits.
    :param parameters: A tuple with the parameters around which to build the list.
    :param param_range: A tuple indicating for each entry the range.
    :param min_values: A tuple that enforces a minimum value for each parameter.
    :param max_values: A tuple that enforces a maximum value for each parameter.
    :return: A list of parameters tuples.
    """
    if len(parameters) == len(param_range):
        min_parameter_range = tuple(parameters[i] - param_range[i] for i in range(len(parameters)))
        max_parameter_range = tuple(parameters[i] + param_range[i] + 1 for i in range(len(parameters)))
        if min_values is not None:
            min_parameter_range = tuple(max(x, y) for x, y in zip(min_parameter_range, min_values))
        if max_values is not None:
            max_parameter_range = tuple(min(x, y) for x, y in zip(max_parameter_range, max_values))
        min_max_parameter_range = tuple(zip(min_parameter_range, max_parameter_range))
        parameters_combinatorial = product(*tuple(map(list, list(starmap(range, min_max_parameter_range)))))
    else:
        raise ValueError("Length of parameters and param_range is not equal.")
    return list(parameters_combinatorial)


def average_neighbors(input_df: pd.DataFrame, param_range: Tuple[int, ...], min_values: Tuple[int, ...]=None, max_values: Tuple[int, ...]=None)\
        -> pd.DataFrame:
    """
    Averages the input_df with the neighbor values defined by the param_range.
    :param input_df: A DataFrame with indexed by tuples with the measurements.
    :param param_range: A tuple indicating for each parameter the distance of the maximum neighbor to average with.
    :param min_values: A tuple that enforces a minimum value for each parameter.
    :param max_values: A tuple that enforces a maximum value for each parameter.
    :return: A Dataframe of the same shape as the input_df but where each value has been averaged with its neighbors.
    """
    averaged_df = input_df.copy()  # type: pd.DataFrame
    # TODO: itertuples is not efficient. Does a vectorized approach exist?
    for row in input_df.itertuples():
        sub_df = input_df.loc[parameters_list_between_range(row[0], param_range, min_values, max_values)]
        averaged_row = sub_df.mean(axis=0)
        averaged_df.at[row[0],:] = averaged_row
    return averaged_df

编辑: 添加一个示例input_df并得到平均的_df: 调用是:

average_neighbors(input_df, (2, 1), (5, 5), (9, 9))

input_df

               1         2         3         4         5
0
(5, 5) -0.034785  0.105553  0.175304 -0.100131 -0.087695
(5, 6) -0.019643  0.007028 -0.117302 -0.188429  0.140423
(5, 7)  1.090219  0.149492  0.134205  0.298541 -0.766889
(5, 8)  0.233639  0.011140 -0.070625  0.296987 -0.555725
(5, 9) -0.160929 -0.054387  0.149795 -0.236799 -0.236427
(6, 5) -0.053750 -0.105638  0.306676  0.075424 -0.253134
(6, 6)  0.488996 -0.104845  0.037985  0.097563  0.816975
(6, 7) -0.273730 -0.006430  0.048764  0.337964 -0.558355
(6, 8) -0.279250 -0.039354  0.139512  0.312060 -0.440458
(6, 9) -0.215230 -0.077674 -0.059508  0.731031  0.146549
(7, 5) -0.447961  0.114293  0.032839  0.042610 -0.158302
(7, 6) -0.151704 -0.006943  0.053286 -0.276120  0.084298
(7, 7)  0.690647 -0.053874  0.171092  0.461872  0.164381
(7, 8)  0.431084  0.166979  0.224027  0.226597  0.116096
(7, 9) -0.548030  0.021681  0.504869  0.347923 -0.307202
(8, 5)  0.903684  0.059785  0.143359  0.423591  0.046842
(8, 6)  0.424536 -0.025986  0.089045 -0.086571  0.004112
(8, 7) -0.036251  0.172838  0.391125 -0.253686  0.049140
(8, 8) -0.251853  0.035594  0.088101  0.154551 -0.071685
(8, 9) -0.314121 -0.002571 -0.035833  0.134743 -0.115290
(9, 5)  0.083115 -0.063250  0.192984 -0.030540  0.265402
(9, 6) -0.300660  0.136081  0.203255 -0.115099  0.014861
(9, 7) -0.276533  0.031048  0.041306  0.193987 -0.504231
(9, 8)  0.336343 -0.053169  0.037187  0.081937 -0.042678
(9, 9)  0.041883 -0.178786  0.094013 -0.110578 -0.242337

averaged_df

               1         2         3         4         5
0                                                       
(5, 5) -0.036474  0.001575  0.081465 -0.058180  0.090428
(5, 6)  0.143143  0.010960  0.093650  0.083255 -0.068700
(5, 7)  0.245584  0.013688  0.068994  0.174115 -0.111028
(5, 8)  0.107602  0.013064  0.138015  0.308464 -0.270892
(5, 9) -0.089786  0.004731  0.148012  0.279633 -0.212861
(6, 5)  0.138672  0.005406  0.090149 -0.001508  0.074190
(6, 6)  0.215021  0.025439  0.122198  0.069386 -0.043184
(6, 7)  0.195557  0.025470  0.099101  0.115111 -0.084807
(6, 8)  0.030516  0.026953  0.140460  0.234315 -0.214655
(6, 9) -0.138086  0.007676  0.117542  0.245887 -0.183018
(7, 5)  0.089183  0.011608  0.111743 -0.015770  0.087378
(7, 6)  0.139079  0.027277  0.126928  0.058732 -0.049478
(7, 7)  0.140389  0.027973  0.098064  0.102810 -0.103316
(7, 8)  0.031192  0.008168  0.123869  0.198475 -0.224341
(7, 9) -0.072647 -0.017055  0.107154  0.193845 -0.174916
(8, 5)  0.118282  0.000437  0.132429  0.016357  0.102632
(8, 6)  0.087532  0.012257  0.142643  0.072583 -0.002334
(8, 7)  0.066802  0.020995  0.127057  0.094588 -0.030629
(8, 8) -0.057920  0.001357  0.137055  0.218200 -0.150506
(8, 9) -0.099897 -0.015913  0.124046  0.234783 -0.119626
(9, 5)  0.085168  0.035664  0.119128 -0.007021  0.042869
(9, 6)  0.098764  0.040444  0.146477  0.040005 -0.003722
(9, 7)  0.096179  0.044730  0.144269  0.043052 -0.020634
(9, 8)  0.008130  0.015527  0.168432  0.137483 -0.105978
(9, 9) -0.050783 -0.001712  0.152061  0.139195 -0.110516

0 个答案:

没有答案