我正在从事基于车牌识别的学校项目。我正在简单的电影上测试它:一辆汽车,静态照相机等。
这是什么样子
我的第一步是在此框架上只找到汽车(我认为这对于拍摄更多“困难”的视频会有所帮助):
然后我搜索车牌。这是我的代码:
std::vector<cv::Rect> boundRect;
cv::Mat img_gray, img_sobel, img_threshold, element;
cvtColor(detectedMats[i], img_gray, CV_BGR2GRAY);
cv::Sobel(img_gray, img_sobel, CV_8U, 1, 0, 3, 1, 0, cv::BORDER_DEFAULT);
cv::threshold(img_sobel, img_threshold, 0, 255, CV_THRESH_OTSU + CV_THRESH_BINARY);
element = getStructuringElement(cv::MORPH_RECT, cv::Size(30, 30));
//element = getStructuringElement(cv::MORPH_RECT, cv::Size(17, 3) );
cv::morphologyEx(img_threshold, img_threshold, CV_MOP_CLOSE, element);
std::vector< std::vector< cv::Point> > LP_contours;
cv::findContours(img_threshold, LP_contours, 0, 1);
std::vector<std::vector<cv::Point> > contours_poly(LP_contours.size());
for (int ii = 0; ii < LP_contours.size(); ii++)
if (LP_contours[ii].size() > 100 && contourArea(LP_contours[ii]) > 3000 && contourArea(LP_contours[ii]) < 10000) //można się pobawić parametrami
{
cv::approxPolyDP(cv::Mat(LP_contours[ii]), contours_poly[ii], 3, true);
cv::Rect appRect(boundingRect(cv::Mat(contours_poly[ii])));
if (appRect.width > appRect.height)
boundRect.push_back(appRect);
}
结果您可以在第二张图片中看到。
然后尝试获得良好的检测板轮廓。我做了几个步骤。
使用过滤器和阈值:
cv::Mat blur;
cv::bilateralFilter(equalized, blur, 9, 75, 75);
cv::imshow("Filter", blur);
/* Threshold to binarize the image */
cv::Mat thres;
cv::adaptiveThreshold(blur, thres, 255, cv::ADAPTIVE_THRESH_GAUSSIAN_C, cv::THRESH_BINARY, 15, 2); //15, 2
cv::imshow("Threshold", thres);
最后我找到了轮廓,但轮廓并不是很好。数字有点模糊:
std::vector<std::vector<cv::Point> > contours;
cv::findContours(thres, contours, cv::RETR_LIST, cv::CHAIN_APPROX_SIMPLE);
//cv::findContours(thres, contours, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
double min_area = 50;
double max_area = 2000;
std::vector<std::vector<cv::Point> > good_contours;
for (size_t i = 0; i < contours.size(); i++)
{
double area = cv::contourArea(contours[i]);
if (area > min_area && area < max_area)
good_contours.push_back(contours[i]);
}
也许您对提高结果有一些想法?我尝试更改一些参数,但仍然无法正常工作。
感谢帮助
---------------------------编辑:tesseract安装---------------- --------
使用
.\vcpkg install tesseract:x64-windows-static
所以看起来不错,但是当我尝试运行示例时,VS看不到库:
已解决:
更改
.\vcpkg install tesseract:x64-windows-static
进入
.\vcpkg install tesseract:x64-windows
,效果很好。
答案 0 :(得分:1)
使用tesseract OCR检测文本。成功安装tesseract之后,在其他依赖项中添加tesseract305.lib和leptonica-1.74.4.lib。使用以下代码(来自教程):
#include "stdafx.h"
#include "winsock2.h"
#include <tesseract/baseapi.h>
#include <leptonica/allheaders.h>
#pragma comment(lib, "ws2_32.lib")
int main()
{
char *outText;
tesseract::TessBaseAPI *api = new tesseract::TessBaseAPI();
// Initialize tesseract-ocr with English, without specifying tessdata path
if (api->Init(NULL, "eng")) {
fprintf(stderr, "Could not initialize tesseract.\n");
exit(1);
}
// Open input image with leptonica library
Pix *image = pixRead("test.tif");
api->SetImage(image);
// Get OCR result
outText = api->GetUTF8Text();
printf("OCR output:\n%s", outText);
// Destroy used object and release memory
api->End();
delete[] outText;
pixDestroy(&image);
return 0;
}