我有两列,一列的类型为datetime64和datetime.time。的 第一列为日期,第二列为小时和分钟。一世 解析它们时遇到了麻烦:
Leistung_0011
ActStartDateExecution ActStartTimeExecution
0 2016-02-17 11:00:00
10 2016-04-15 07:15:00
20 2016-06-10 10:30:00
Leistung_0011 ['Start_datetime'] = pd.to_datetime(Leistung_0011 ['ActStartDateExecution'.astype(str)+''+ Leistung_0011 ['ActStartTimeExecution']。astype(str))
ValueError: ('Unknown string format:', 'NaT 00:00:00')
答案 0 :(得分:1)
您可以转换为str
并加入空格,然后再传递给pd.to_datetime
:
df['datetime'] = pd.to_datetime(df['day'].astype(str) + ' ' + df['time'].astype(str))
print(df, df.dtypes, sep='\n')
# day time datetime
# 0 2018-01-01 15:00:00 2018-01-01 15:00:00
# 1 2015-12-30 05:00:00 2015-12-30 05:00:00
# day datetime64[ns]
# time object
# datetime datetime64[ns]
# dtype: object
设置
from datetime import datetime
df = pd.DataFrame({'day': ['2018-01-01', '2015-12-30'],
'time': ['15:00', '05:00']})
df['day'] = pd.to_datetime(df['day'])
df['time'] = df['time'].apply(lambda x: datetime.strptime(x, '%H:%M').time())
print(df['day'].dtype, type(df['time'].iloc[0]), sep='\n')
# datetime64[ns]
# <class 'datetime.time'>
包含秒的完整示例:
import pandas as pd
from io import StringIO
x = StringIO(""" ActStartDateExecution ActStartTimeExecution
0 2016-02-17 11:00:00
10 2016-04-15 07:15:00
20 2016-06-10 10:30:00""")
df = pd.read_csv(x, delim_whitespace=True)
df['ActStartDateExecution'] = pd.to_datetime(df['ActStartDateExecution'])
df['ActStartTimeExecution'] = df['ActStartTimeExecution'].apply(lambda x: datetime.strptime(x, '%H:%M:%S').time())
df['datetime'] = pd.to_datetime(df['ActStartDateExecution'].astype(str) + ' ' + df['ActStartTimeExecution'].astype(str))
print(df.dtypes)
ActStartDateExecution datetime64[ns]
ActStartTimeExecution object
datetime datetime64[ns]
dtype: object