出于教育目的,我一直在尝试通过使用各种语言扩展和单例类型,从Haskell的“带Idris的类型驱动的开发”(即RemoveElem.idr)一书中重构一个示例。它的要点是一个函数,它从非空向量中删除一个元素,前提是证明该元素实际上在向量中。以下代码是独立的(GHC 8.4或更高版本)。问题出现在最后:
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeInType #-}
import Data.Kind
import Data.Type.Equality
import Data.Void
-- | Inductively defined natural numbers.
data Nat = Z | S Nat deriving (Eq, Show)
-- | Singleton types for natural numbers.
data SNat :: Nat -> Type where
SZ :: SNat 'Z
SS :: SNat n -> SNat ('S n)
deriving instance Show (SNat n)
-- | "Demote" a singleton-typed natural number to an ordinary 'Nat'.
fromSNat :: SNat n -> Nat
fromSNat SZ = Z
fromSNat (SS n) = S (fromSNat n)
-- | A decidable proposition.
data Dec a = Yes a | No (a -> Void)
-- | Propositional equality of natural numbers.
eqSNat :: SNat a -> SNat b -> Dec (a :~: b)
eqSNat SZ SZ = Yes Refl
eqSNat SZ (SS _) = No (\case {})
eqSNat (SS _) SZ = No (\case {})
eqSNat (SS a) (SS b) = case eqSNat a b of
No f -> No (\case Refl -> f Refl)
Yes Refl -> Yes Refl
-- | A length-indexed list (aka vector).
data Vect :: Nat -> Type -> Type where
Nil :: Vect 'Z a
(:::) :: a -> Vect n a -> Vect ('S n) a
infixr 5 :::
deriving instance Show a => Show (Vect n a)
-- | @Elem a v@ is the proposition that an element of type @a@
-- is contained in a vector of type @v@. To be useful, @a@ and @v@
-- need to refer to singleton types.
data Elem :: forall a n. a -> Vect n a -> Type where
Here :: Elem x (x '::: xs)
There :: Elem x xs -> Elem x (y '::: xs)
deriving instance Show a => Show (Elem a v)
------------------------------------------------------------------------
-- From here on, to simplify things, only vectors of natural
-- numbers are considered.
-- | Singleton types for vectors of 'Nat's.
data SNatVect :: forall n. Nat -> Vect n Nat -> Type where
SNatNil :: SNatVect 'Z 'Nil
SNatCons :: SNat a -> SNatVect n v -> SNatVect ('S n) (a '::: v)
deriving instance Show (SNatVect n v)
-- | "Demote" a singleton-typed vector of 'SNat's to an
-- ordinary vector of 'Nat's.
fromSNatVect :: SNatVect n v -> Vect n Nat
fromSNatVect SNatNil = Nil
fromSNatVect (SNatCons a v) = fromSNat a ::: fromSNatVect v
-- | Decide whether a value is in a vector.
isElem :: SNat a -> SNatVect n v -> Dec (Elem a v)
isElem _ SNatNil = No (\case {})
isElem a (SNatCons b as) = case eqSNat a b of
Yes Refl -> Yes Here
No notHere -> case isElem a as of
Yes there -> Yes (There there)
No notThere -> No $ \case
Here -> notHere Refl
There there -> notThere there
type family RemoveElem (a :: Nat) (v :: Vect ('S n) Nat) :: Vect n Nat where
RemoveElem a (a '::: as) = as
RemoveElem a (b '::: as) = b '::: RemoveElem a as
-- | Remove a (singleton-typed) element from a (non-empty, singleton-typed)
-- vector, given a proof that the element is in the vector.
removeElem :: forall (a :: Nat) (v :: Vect ('S n) Nat)
. SNat a
-> Elem a v
-> SNatVect ('S n) v
-> SNatVect n (RemoveElem a v)
removeElem x prf (SNatCons y ys) = case prf of
Here -> ys
There later -> case ys of
SNatNil -> case later of {}
SNatCons{} -> SNatCons y (removeElem x later ys)
-- ^ Could not deduce:
-- RemoveElem a (y '::: (a2 '::: v2))
-- ~ (y '::: RemoveElem a (a2 '::: v2))
显然,类型系统需要说服值x
和y
的类型在代码的那个分支中不可能相等,因此可以使用类型族的第二个等式明确地根据需要减少返回类型。我不知道该怎么做。天真地,我希望构造函数There
以及There later
上的模式匹配可以携带/揭示GHC类型不等式的证明。
以下是一个明显的冗余和部分解决方案,仅演示了GHC对递归调用进行类型检查所需的类型不平等:
SNatCons{} -> case (x, y) of
(SZ, SS _) -> SNatCons y (removeElem x later ys)
(SS _, SZ) -> SNatCons y (removeElem x later ys)
现在例如这有效:
λ> let vec = SNatCons SZ (SNatCons (SS SZ) (SNatCons SZ SNatNil))
λ> :t vec
vec
:: SNatVect ('S ('S ('S 'Z))) ('Z '::: ('S 'Z '::: ('Z '::: 'Nil)))
λ> let Yes prf = isElem (SS SZ) vec
λ> :t prf
prf :: Elem ('S 'Z) ('Z '::: ('S 'Z '::: ('Z '::: 'Nil)))
λ> let vec' = removeElem (SS SZ) prf vec
λ> :t vec'
vec' :: SNatVect ('S ('S 'Z)) ('Z '::: ('Z '::: 'Nil))
λ> fromSNatVect vec'
Z ::: (Z ::: Nil)
正如@chi的注释中所暗示并在HTNW's answer中所阐述的那样,我试图通过编写具有上述类型签名和类型族的removeElem
来解决错误的问题,如果可以的话到时,结果程序将被打错。
以下是我根据HTNW的答案进行的更正(您可能需要在继续阅读之前先阅读它)。
第一个错误或不必要的复杂性是重复SNatVect
类型的向量的长度。我认为写fromSNatVect
是必要的,但肯定不是:
data SNatVect (v :: Vect n Nat) :: Type where
SNatNil :: SNatVect 'Nil
SNatCons :: SNat a -> SNatVect v -> SNatVect (a '::: v)
deriving instance Show (SNatVect v)
fromSNatVect :: forall (v :: Vect n Nat). SNatVect v -> Vect n Nat
-- implementation unchanged
现在有两种编写removeElem
的方法。第一个使用Elem
,SNatVect
并返回Vect
:
removeElem :: forall (a :: Nat) (n :: Nat) (v :: Vect ('S n) Nat)
. Elem a v
-> SNatVect v
-> Vect n Nat
removeElem prf (SNatCons y ys) = case prf of
Here -> fromSNatVect ys
There later -> case ys of
SNatNil -> case later of {}
SNatCons{} -> fromSNat y ::: removeElem later ys
第二个变量使用SElem
类型家族,它反映了值级别的函数:SNatVect
,SNatVect
并返回RemoveElem
:
data SElem (e :: Elem a (v :: Vect n k)) where
SHere :: forall x xs. SElem ('Here :: Elem x (x '::: xs))
SThere :: forall x y xs (e :: Elem x xs). SElem e -> SElem ('There e :: Elem x (y '::: xs))
type family RemoveElem (xs :: Vect ('S n) a) (e :: Elem x xs) :: Vect n a where
RemoveElem (x '::: xs) 'Here = xs
RemoveElem (x '::: xs) ('There later) = x '::: RemoveElem xs later
sRemoveElem :: forall (xs :: Vect ('S n) Nat) (e :: Elem x xs)
. SElem e
-> SNatVect xs
-> SNatVect (RemoveElem xs e)
sRemoveElem prf (SNatCons y ys) = case prf of
SHere -> ys
SThere later -> case ys of
SNatNil -> case later of {}
SNatCons{} -> SNatCons y (sRemoveElem later ys)
有趣的是,由于该信息包含在Elem
/ SElem
值中,因此这两个版本都将传递要删除的元素作为一个单独的参数。 value
自变量也可以从该函数的Idris版本中删除,尽管removeElem_auto变体可能有点令人困惑,因为它只会将向量作为显式自变量并删除第一个如果隐式prf
参数未明确用于其他证明,则为向量的元素。
答案 0 :(得分:5)
考虑[1, 2, 1]
。 RemoveElem 1 [1, 2, 1]
是[2, 1]
。现在,调用removeElem 1 (There $ There $ Here) ([1, 2, 1] :: SNatVect 3 [1, 2, 1]) :: SNatVect 2 [2, 1]
应该会编译。错了Elem
参数表示删除第三个元素,该元素将得到[1, 2]
,但类型签名表明它必须为[2, 1]
。
首先,SNatVect
有点破损。它有两个Nat
自变量:
data SNatVect :: forall n. Nat -> Vect n a -> Type where ...
第一个是n
,第二个是未命名的Nat
。根据{{1}}的结构,它们始终相等。它允许SNatVect
用作相等性证明的两倍,但这样做的意图可能并非故意。你可能是说
SNatVect
无法仅使用常规data SNatVect (n :: Nat) :: Vect n Nat -> Type where ...
语法在源Haskell中写入此签名。但是,当GHC打印此类型时,您有时会得到
->
但这是多余的。您可以将SNatVect :: forall (n :: Nat) -> Vect n Nat -> Type
作为隐式Nat
的参数,并根据forall
的类型进行推断:
Vect
这给
data SNatVect (xs :: Vect n Nat) where
SNatNil :: SNatVect 'Nil
SNatCons :: SNat x -> SNatVect xs -> SNatVect (x '::: xs)
第二,尝试写作
SNatVect :: forall (n :: Nat). Vect n Nat -> Type
请注意removeElem :: forall (n :: Nat) (x :: Nat) (xs :: Vect (S n) Nat).
Elem x xs -> SNatVect xs -> Vect n Nat
参数是如何消失的,返回类型如何是简单的SNat
。 Vect
参数使类型“太大”,因此当该函数变得毫无意义时,您就陷入了使其工作的困境。 SNat
返回类型表示您正在跳过步骤。大致上,每个函数都有三种形式:基本的SNatVect
;类型级别f :: a -> b -> c
;和相关的type family F (x :: a) (y :: b) :: c
。每种都以“相同”的方式实现,但是尝试在不实现其前身的情况下实现一个是确保混乱的肯定方法。
现在,您可以将其抬高一点:
f :: forall (x :: a) (y :: b). Sing x -> Sing y -> Sing (F x y)
记下data SElem (e :: Elem x (xs :: Vect n k)) where
SHere :: forall x xs. SElem ('Here :: Elem x (x '::: xs))
SThere :: forall x y xs (e :: Elem x xs). SElem e -> SElem ('There e :: Elem x (y '::: xs))
type family RemoveElem (xs :: Vect (S n) a) (e :: Elem x xs) :: Vect n a
和removeElem
类型之间的关系。参数的重新排序是因为RemoveElem
的类型取决于e
,因此需要对它们进行相应的排序。另一种选择:将xs
参数从xs
隐式地提升为明确给定,然后forall
参数被取消,因为它不包含任何信息,因为一个单例。
最后,您可以编写以下功能:
Sing xs