正如标题所述,我正在尝试获取TensorFlow模型中的实际预测。问题是,即使已经有多个答案,我也不了解如何获取预测。我不了解pred.eval或会话函数需要什么数据,我希望这里有人可以解释它。
我正在使用的代码在这里:
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
import matplotlib as plt
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model_fn(features, labels, mode):
input_layer=tf.reshape(features["x"], [-1, 28, 28, 1])
conv1=tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu
)
pool1=tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
conv2=tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding="same",
activation=tf.nn.relu
)
pool2=tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
pool2_flat=tf.reshape(pool2, [-1, 7*7*64])
dense=tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout=tf.layers.dropout(
inputs=dense, rate=0.4, training=mode == tf.estimator.ModeKeys.TRAIN
)
logits=tf.layers.dense(inputs=dropout, units=10)
tf.argmax(input=logits, axis=1)
tf.nn.softmax(logits, name="softmax_tensor")
predictions = {
"classes": tf.argmax(input=logits, axis=1),
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")
}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
loss=tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer=tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op=optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step()
)
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
mnist=tf.contrib.learn.datasets.load_dataset("mnist")
train_data=mnist.train.images
train_labels=np.asarray(mnist.train.labels, dtype=np.int32)
eval_data=mnist.test.images
eval_labels=np.asarray(mnist.test.labels, dtype=np.int32)
mnist_classifier=tf.estimator.Estimator(
model_fn=cnn_model_fn, model_dir="/tmp/mnist_convnet_model"
)
tensors_to_log={"probabilities": "softmax_tensor"}
logging_hook=tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=50)
train_input_fn=tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=None,
shuffle=True
)
mnist_classifier.train(
input_fn=train_input_fn,
steps=20000,
hooks=[logging_hook]
)
eval_input_fn=tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False
)
eval_results=mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()`
在这种情况下我该怎么办?
任何建议都将受到赞赏,并预先感谢
答案 0 :(得分:2)
假设您要为其获取预测的输入数据称为predict_data
(如果您对此感兴趣,可以在此处使用train_data
或eval_data
),会
pred_input_fn = tf.estimator.inputs.numpy_input_fn(x={'x': predict_data}, shuffle=False)
predictor = list(mnist_classifier.predict(pred_input_fn))
这时,predictor
是字典的列表,这些字典将'classes'
映射到预测的类,将'probabilities'
映射到相关的概率。您可以从中得到的结果就是您在predictions
中指定为cnn_model_fn
的结果。