我刚开始使用Python,但在理解如何实现以下目标(我是Java程序员)方面遇到困难。
这是初始代码:
def compute_distances_two_loops(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a nested loop over both the training data and the
test data.
Inputs:
- X: A numpy array of shape (num_test, D) containing test data.
Returns:
- dists: A numpy array of shape (num_test, num_train) where dists[i, j]
is the Euclidean distance between the ith test point and the jth training
point.
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in range(num_test):
for j in range(num_train):
#####################################################################
# TODO: #
# Compute the l2 distance between the ith test point and the jth #
# training point, and store the result in dists[i, j]. You should #
# not use a loop over dimension. #
#####################################################################
dists[i, j] = np.sum(np.square(X[i] - self.X_train[j]))
#####################################################################
# END OF YOUR CODE #
#####################################################################
return dists
这是一段应该少嵌套的循环,同时仍输出相同数组的代码:
def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in range(num_test):
tmp = '%s %d' % ("\nfor i:", i)
print(tmp)
print(X[i])
print("end of X[i]")
print(self.X_train[:]) # all the thing [[ ... ... ]]
print(": before, i after")
print(self.X_train[i]) # just a row
print(self.X_train[i, :])
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
dists[i, :] = np.sum(np.square(X[i] - self.X_train[i, :]))
print(dists[i])
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists
this似乎应该对我有所帮助,但我仍然想不通。
您可以看到,除其他外,我的陷阱是我对“:”的确切工作方式缺乏理解。
我花了数小时试图弄清楚这个问题,但似乎我真的缺乏一些核心知识。有人可以帮我吗?此练习是针对斯坦福大学视觉识别课程进行的:这是第一个作业,但它并不是我的真正作业,因为我只是为了娱乐而独自学习。
当前,我的代码段输出two_loops
的对角线的正确值,但对于整个行。我不知道如何将:
中的dists[i, :]
与- self.X_train[i, :]
部分进行同步。如何计算X [i]减去贯穿整个self.X_train的迭代次数?
注意:num_test
是500x3072,而num_train
是5000x3072。 3072来自32x32x3,这是32x32图片的RGB值。 dists[i,j]
是一个500x5000的矩阵,它映射num_test
的第i个元素和num_train
的第j个元素之间的L2距离。
答案 0 :(得分:2)
def compute_distances_one_loop(self, X):
"""
Compute the distance between each test point in X and each training point
in self.X_train using a single loop over the test data.
Input / Output: Same as compute_distances_two_loops
"""
num_test = X.shape[0]
num_train = self.X_train.shape[0]
dists = np.zeros((num_test, num_train))
for i in range(num_test):
tmp = '%s %d' % ("\nfor i:", i)
print(tmp)
#######################################################################
# TODO: #
# Compute the l2 distance between the ith test point and all training #
# points, and store the result in dists[i, :]. #
#######################################################################
dists[i] = np.sum(np.square(X[i] - self.X_train), axis=1)
print(dists[i])
#######################################################################
# END OF YOUR CODE #
#######################################################################
return dists
因为循环长度不同,所以在循环中使用self.X_train删除打印。 (IndexOutOfRangeException) 我不确定这是否要删除第二个循环,但是否可行。
另一条评论,我认为您对欧氏距离公式有误。 您最后缺少了sqrt。