我有一个时间序列,各种各样的低调。我的问题是如何切片熊猫数据框(在本例中为简单起见,为数组)以获取降序位的数据及其索引时间序列?
import matplotlib.pyplot as plt
import numpy as np
b = np.asarray([ 1.3068586 , 1.59882279, 2.11291473, 2.64699527,
3.23948166, 3.81979878, 4.37630243, 4.97740025,
5.59247254, 6.18671493, 6.77414586, 7.43078595,
8.02243495, 8.59612224, 9.22302662, 9.83263379,
10.43125902, 11.0956864 , 11.61107838, 12.09616684,
12.63973254, 12.49437955, 11.6433792 , 10.61083269,
9.50534291, 8.47418827, 7.40571742, 6.56611512,
5.66963658, 4.89748187, 4.10543794, 3.44828054,
2.76866318, 2.24306623, 1.68034463, 1.26568186,
1.44548443, 2.01225076, 2.60715524, 3.21968562,
3.8622007 , 4.57035958, 5.14021305, 5.77879484,
6.42776897, 7.09397923, 7.71722028, 8.30860725,
8.96652218, 9.66157193, 10.23469208, 10.79889453,
10.5788411 , 9.38270646, 7.82070643, 6.74893389,
5.68200335, 4.73429009, 3.78358222, 3.05924946,
2.30428171, 1.78052369, 1.27897065, 1.16840532,
1.59452726, 2.13085096, 2.70989933, 3.3396291 ,
3.97318058, 4.62429262, 5.23997774, 5.91232803,
6.5906609 , 7.21099657, 7.82936331, 8.49636247,
9.15634983, 9.76450244, 10.39680729, 11.04659976,
11.69287237, 12.35692643, 12.99957563, 13.66228386,
14.31806385, 14.91871927, 15.57212978, 16.22288287,
16.84697357, 17.50502002, 18.15907842, 18.83068151,
19.50945548, 20.18020639, 20.84441358, 21.52792846,
22.17933087, 22.84614545, 23.51212887, 24.18308399,
24.8552263 , 25.51709528, 26.18724379, 26.84531493,
27.50690265, 28.16610365, 28.83394822, 29.49621179,
30.15118676, 30.8019521 , 31.46714114, 32.1213546 ,
32.79366952, 33.45233007, 34.12158193, 34.77502197,
35.4532211 , 36.11018053, 36.76540453, 37.41746323])
plt.plot(-b)
plt.show()
答案 0 :(得分:1)
创建第二个数据框,将所有索引从一个索引中移出,然后将它们逐项相减。你应该得到你想要的(只得到负差值的那些) 在这里:
df = DataFrame(b)
df = concat([df.shift(1),df],axis = 1)
df.columns = ['t-1','t']
df.reset_index()
df = df.drop(df.index[0])
df['diff'] = df['t']-df['t-1']
res = df[df['diff']<0]
答案 1 :(得分:1)
您可以将负差异更改为NaN
,然后绘制:
bb = pd.Series(-b)
bb[bb.diff().ge(0)] = np.nan
bb.plot()
要获取降序索引,请使用:
bb.index[bb.diff().lt(0)]
Int64Index([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 65, 66, 67, 68,
69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94,
95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119],
dtype='int64')
答案 2 :(得分:1)
还有一个简单的仅基于Numpy的解决方案(问题标记为ENGAGEMENT_MINUTES
,但代码仅使用pandas
)使用np.where
。您需要图形下降的点,这意味着数据在上升。
numpy
请注意,这将为您在每个递增的连续值对中提供第一个值,而基于熊猫的解决方案将为您提供第二个值。要获得相同的索引,只需将# the indices where the data is ascending.
ix, = np.where(np.diff(b) > 0)
# the values
c = b[ix]
添加到1
。
ix