C#ReadOnlySpan <char>与子字符串进行字符串解剖

时间:2018-08-15 18:48:20

标签: c# string

我有一个相当简单的字符串扩展方法,该方法在我执行大量字符串操作的系统中经常被调用。我阅读了这篇文章(String.Substring() seems to bottleneck this code),并认为我会尝试使用相同的方法来查看是否可以通过更改读取字符串的方式来获得一些性能。我的结果与我所期望的不尽相同(我期望ReadOnlySpan可以显着提高性能),我想知道为什么会这样。在实际运行的生产代码中,我发现性能损失很小。

我生成了一个文件,其中包含约115万行带有我关心的字符的字符串,每个字符串都称为方法,并将结果转储到控制台。

我的结果(运行时间以毫秒为单位)为:

ReadOnlySpan.IndexOf Framework 4.7.1: 68538
ReadOnlySpan.IndexOf Core 2.1: 64486

ReadOnlySpan.SequenceEqual Framework 4.7.1: 63650
ReadOnlySpan.SequenceEqual Core 2.1: 65071

substring Framework 4.7.1: 63508
substring Core 2.1: 64125


代码(从Full Framework到Core 2.1都相同):

呼叫代码:

static void Main(string[] args)
{
    Stopwatch sw = new Stopwatch();
    sw.Start();

    var f = File.ReadAllLines("periods.CSV");

    foreach (string s in f)
    { Console.WriteLine(s.CountOccurrences(".")); }

    sw.Stop();
    Console.WriteLine("Done in " + sw.ElapsedMilliseconds + " ms");
    Console.ReadKey();
}


我方法的原始子字符串形式:

public static int CountOccurrencesSub(this string val, string searchFor)
{
    if (string.IsNullOrEmpty(val) || string.IsNullOrEmpty(searchFor))
    { return 0; }

    int count = 0;

    for (int x = 0; x <= val.Length - searchFor.Length; x++)
    {
        if (val.Substring(x, searchFor.Length) == searchFor)
        { count++; }
    }

    return count;
}


ReadOnlySpan版本(我已经使用IndexOf和SequenceEqual对它们进行了相等性检查):

public static int CountOccurrences(this string val, string searchFor)
{
    if (string.IsNullOrEmpty(val) || string.IsNullOrEmpty(searchFor))
    { return 0; }

    int count = 0;

    ReadOnlySpan<char> vSpan = val.AsSpan();
    ReadOnlySpan<char> searchSpan = searchFor.AsSpan();

    for (int x = 0; x <= vSpan.Length - searchSpan.Length; x++)
    {
        if (vSpan.Slice(x, searchSpan.Length).SequenceEqual(searchSpan))
        { count++; }
    }

    return count;
}


相等比较是否在我正在调用的方法中进行分配,因此没有提高?这对ReadOnlySpan来说不是一个好的应用程序吗?我只是老糊口了吗?

3 个答案:

答案 0 :(得分:6)

虽然我参加聚会有点晚了,但是我认为我仍然可以为该主题添加相关信息。

首先,关于其他海报的尺寸的一些话。

OP的结果显然是错误的。正如评论中指出的那样,I / O操作完全扭曲了统计信息。

接受的答案的发布者处在正确的轨道上。他的方法消除了缓慢的I / O操作,并明确关注基准测试的主题。但是,他没有提到使用的环境(尤其是.NET运行时),他的“热身方法”值得商bat。

性能测量是一项非常棘手的业务,很难正确地进行。如果我想获得有效的结果,我什至不会尝试自己编写代码。因此,我决定使用广泛使用的Benchmark.NET库来检查此问题。为了使所有这些变得更有趣,我在组合中添加了第三位候选人。此实现使用String.CompareOrdinal进行事件计数,我期望从中获得不错的结果。

基准

在开始测量之前(在全局设置阶段),我生成了1,000,000行lorem ipsum文本。这些数据会在整个测量过程中使用。

每种方法都使用1,000和1,000,000行,并且搜索文本较短(5个字符长)和较长(39个字符长)。

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using BenchmarkDotNet.Attributes;
using BenchmarkDotNet.Running;

namespace MyBenchmarks
{
#if NETCOREAPP2_1
    [CoreJob]
#else
    [ClrJob]
#endif
    [RankColumn, MarkdownExporterAttribute.StackOverflow]
    public class Benchmark
    {
        static readonly string[] words = new[]
        {
            "lorem", "ipsum", "dolor", "sit", "amet", "consectetuer",
            "adipiscing", "elit", "sed", "diam", "nonummy", "nibh", "euismod",
            "tincidunt", "ut", "laoreet", "dolore", "magna", "aliquam", "erat"
        };

        // borrowed from greg (https://stackoverflow.com/questions/4286487/is-there-any-lorem-ipsum-generator-in-c)
        static IEnumerable<string> LoremIpsum(Random random, int minWords, int maxWords, int minSentences, int maxSentences, int numLines)
        {
            var line = new StringBuilder();
            for (int l = 0; l < numLines; l++)
            {
                line.Clear();
                var numSentences = random.Next(maxSentences - minSentences) + minSentences + 1;
                for (int s = 0; s < numSentences; s++)
                {
                    var numWords = random.Next(maxWords - minWords) + minWords + 1;
                    line.Append(words[random.Next(words.Length)]);
                    for (int w = 1; w < numWords; w++)
                    {
                        line.Append(" ");
                        line.Append(words[random.Next(words.Length)]);
                    }
                    line.Append(". ");
                }
                yield return line.ToString();
            }
        }

        string[] lines;

        [Params(1000, 1_000_000)]
        public int N;

        [Params("lorem", "lorem ipsum dolor sit amet consectetuer")]
        public string SearchValue;

        [GlobalSetup]
        public void GlobalSetup()
        {
            lines = LoremIpsum(new Random(), 6, 8, 2, 3, 1_000_000).ToArray();
        }

        public static int CountOccurrencesSub(string val, string searchFor)
        {
            if (string.IsNullOrEmpty(val) || string.IsNullOrEmpty(searchFor))
            { return 0; }

            int count = 0;

            for (int x = 0; x <= val.Length - searchFor.Length; x++)
            {
                if (val.Substring(x, searchFor.Length) == searchFor)
                { count++; }
            }

            return count;
        }

        public static int CountOccurrences(string val, string searchFor)
        {
            if (string.IsNullOrEmpty(val) || string.IsNullOrEmpty(searchFor))
            { return 0; }

            int count = 0;

            ReadOnlySpan<char> vSpan = val.AsSpan();
            ReadOnlySpan<char> searchSpan = searchFor.AsSpan();

            for (int x = 0; x <= vSpan.Length - searchSpan.Length; x++)
            {
                if (vSpan.Slice(x, searchSpan.Length).SequenceEqual(searchSpan))
                { count++; }
            }

            return count;
        }

        public static int CountOccurrencesCmp(string val, string searchFor)
        {
            if (string.IsNullOrEmpty(val) || string.IsNullOrEmpty(searchFor))
            { return 0; }

            int count = 0;

            for (int x = 0; x <= val.Length - searchFor.Length; x++)
            {
                if (string.CompareOrdinal(val, x, searchFor, 0, searchFor.Length) == 0)
                { count++; }
            }

            return count;
        }


        [Benchmark(Baseline = true)]
        public int Substring()
        {
            int occurences = 0;
            for (var i = 0; i < N; i++)
                occurences += CountOccurrencesSub(lines[i], SearchValue);
            return occurences;
        }

        [Benchmark]
        public int Span()
        {
            int occurences = 0;
            for (var i = 0; i < N; i++)
                occurences += CountOccurrences(lines[i], SearchValue);
            return occurences;
        }

        [Benchmark]
        public int Compare()
        {
            int occurences = 0;
            for (var i = 0; i < N; i++)
                occurences += CountOccurrencesCmp(lines[i], SearchValue);
            return occurences;
        }
    }

    public class Program
    {
        public static void Main(string[] args)
        {
            BenchmarkRunner.Run<Benchmark>();
        }
    }
}

结果

NET Core 2.1

BenchmarkDotNet=v0.11.0, OS=Windows 7 SP1 (6.1.7601.0)
Intel Core i3-4360 CPU 3.70GHz (Haswell), 1 CPU, 4 logical and 2 physical cores
Frequency=3604970 Hz, Resolution=277.3948 ns, Timer=TSC
.NET Core SDK=2.1.400
  [Host] : .NET Core 2.1.2 (CoreCLR 4.6.26628.05, CoreFX 4.6.26629.01), 64bit RyuJIT
  Core   : .NET Core 2.1.2 (CoreCLR 4.6.26628.05, CoreFX 4.6.26629.01), 64bit RyuJIT

Job=Core  Runtime=Core  

    Method |       N |          SearchValue |           Mean |           Error |          StdDev |         Median | Scaled | ScaledSD | Rank |
---------- |-------- |--------------------- |---------------:|----------------:|----------------:|---------------:|-------:|---------:|-----:|
 Substring |    1000 |                lorem |     2,149.4 us |       2.2763 us |       2.1293 us |     2,149.4 us |   1.00 |     0.00 |    3 |
      Span |    1000 |                lorem |       555.5 us |       0.2786 us |       0.2470 us |       555.5 us |   0.26 |     0.00 |    1 |
   Compare |    1000 |                lorem |     1,471.8 us |       0.2133 us |       0.1891 us |     1,471.8 us |   0.68 |     0.00 |    2 |
           |         |                      |                |                 |                 |                |        |          |      |
 Substring |    1000 | lorem(...)etuer [39] |     2,128.7 us |       1.0414 us |       0.9741 us |     2,128.6 us |   1.00 |     0.00 |    3 |
      Span |    1000 | lorem(...)etuer [39] |       388.9 us |       0.0440 us |       0.0412 us |       388.9 us |   0.18 |     0.00 |    1 |
   Compare |    1000 | lorem(...)etuer [39] |     1,215.6 us |       0.7016 us |       0.6220 us |     1,215.5 us |   0.57 |     0.00 |    2 |
           |         |                      |                |                 |                 |                |        |          |      |
 Substring | 1000000 |                lorem | 2,239,510.8 us | 241,887.0796 us | 214,426.5747 us | 2,176,083.7 us |   1.00 |     0.00 |    3 |
      Span | 1000000 |                lorem |   558,317.4 us |     447.3105 us |     418.4144 us |   558,338.9 us |   0.25 |     0.02 |    1 |
   Compare | 1000000 |                lorem | 1,471,941.2 us |     190.7533 us |     148.9276 us | 1,471,955.8 us |   0.66 |     0.05 |    2 |
           |         |                      |                |                 |                 |                |        |          |      |
 Substring | 1000000 | lorem(...)etuer [39] | 2,350,820.3 us |  46,974.4500 us | 115,229.1264 us | 2,327,187.2 us |   1.00 |     0.00 |    3 |
      Span | 1000000 | lorem(...)etuer [39] |   433,567.7 us |  14,445.7191 us |  42,593.5286 us |   417,333.4 us |   0.18 |     0.02 |    1 |
   Compare | 1000000 | lorem(...)etuer [39] | 1,299,065.2 us |  25,474.8504 us |  46,582.2045 us | 1,296,892.8 us |   0.55 |     0.03 |    2 |  

NET Framework 4.7.2

BenchmarkDotNet=v0.11.0, OS=Windows 7 SP1 (6.1.7601.0)
Intel Core i3-4360 CPU 3.70GHz (Haswell), 1 CPU, 4 logical and 2 physical cores
Frequency=3604960 Hz, Resolution=277.3956 ns, Timer=TSC
  [Host] : .NET Framework 4.7.2 (CLR 4.0.30319.42000), 64bit RyuJIT-v4.7.3062.0
  Clr    : .NET Framework 4.7.2 (CLR 4.0.30319.42000), 64bit RyuJIT-v4.7.3062.0

Job=Clr  Runtime=Clr  

    Method |       N |          SearchValue |           Mean |          Error |          StdDev |         Median | Scaled | ScaledSD | Rank |
---------- |-------- |--------------------- |---------------:|---------------:|----------------:|---------------:|-------:|---------:|-----:|
 Substring |    1000 |                lorem |     2,025.8 us |      2.4639 us |       1.9237 us |     2,025.4 us |   1.00 |     0.00 |    3 |
      Span |    1000 |                lorem |     1,216.6 us |      4.2994 us |       4.0217 us |     1,217.8 us |   0.60 |     0.00 |    1 |
   Compare |    1000 |                lorem |     1,295.5 us |      5.2427 us |       4.6475 us |     1,293.1 us |   0.64 |     0.00 |    2 |
           |         |                      |                |                |                 |                |        |          |      |
 Substring |    1000 | lorem(...)etuer [39] |     1,939.5 us |      0.4428 us |       0.4142 us |     1,939.3 us |   1.00 |     0.00 |    3 |
      Span |    1000 | lorem(...)etuer [39] |       944.9 us |      2.6648 us |       2.3622 us |       944.7 us |   0.49 |     0.00 |    1 |
   Compare |    1000 | lorem(...)etuer [39] |     1,002.0 us |      0.2475 us |       0.2067 us |     1,002.1 us |   0.52 |     0.00 |    2 |
           |         |                      |                |                |                 |                |        |          |      |
 Substring | 1000000 |                lorem | 2,065,805.7 us |  2,009.2139 us |   1,568.6619 us | 2,065,555.1 us |   1.00 |     0.00 |    3 |
      Span | 1000000 |                lorem | 1,209,976.4 us |  6,238.6091 us |   5,835.5982 us | 1,206,554.3 us |   0.59 |     0.00 |    1 |
   Compare | 1000000 |                lorem | 1,303,321.8 us |  1,257.7418 us |   1,114.9552 us | 1,303,330.1 us |   0.63 |     0.00 |    2 |
           |         |                      |                |                |                 |                |        |          |      |
 Substring | 1000000 | lorem(...)etuer [39] | 2,085,652.9 us | 62,651.7471 us | 168,309.8501 us | 1,973,522.2 us |   1.00 |     0.00 |    3 |
      Span | 1000000 | lorem(...)etuer [39] |   958,421.2 us |  3,703.5508 us |   3,464.3034 us |   958,324.9 us |   0.46 |     0.03 |    1 |
   Compare | 1000000 | lorem(...)etuer [39] | 1,007,936.8 us |    802.1730 us |     750.3531 us | 1,007,680.3 us |   0.49 |     0.04 |    2 |

结论

很明显,使用Span 可以显着提高性能。令人惊讶的是,它在.NET Core上是4-5倍,而在.NET Framework上只有2倍。这可能是什么原因造成的?有人有线索吗?

String.CompareOrdinal 的表现也很好。我期望得到更好的结果,因为从理论上讲,它是逐字节比较的,但还算不错。在.NET Framework上,这绝对是一个可行的选择。

搜索字符串的长度(当然,四肢除外)似乎对结果没有太大影响。

答案 1 :(得分:4)

我很感兴趣,并试图重复您的测试。根据数据集的大小,使用ReadOnlySpan的代码执行速度几乎快一倍:

CountOccurences Done in 1080 ms
CountOccurencesSub Done in 1789 ms

使用更大的数据集,差异似乎会增加(这似乎合乎逻辑,因为Substring分配了一个字符串,这会增加GC压力)。

我使用以下代码进行测试:

static void Main(string[] args)
{
    var r = new Random();

    // generate 100000 lines of 1000 random characters
    var text = Enumerable.Range(0, 100000).Select(x => new string(Enumerable.Range(0, 1000).Select(i => (char)r.Next(255)).ToArray())).ToArray();

    // warm up
    "".CountOccurrencesSub("");
    "".CountOccurrences("");

    Measure(text, "CountOccurencesSub", s => s.CountOccurrencesSub("."));

    Measure(text, "CountOccurences", s => s.CountOccurrences("."));

    Console.ReadKey();
}

private static void Measure(string[] text, string test, Action<string> action)
{
    Stopwatch sw = new Stopwatch();
    sw.Start();

    foreach (string s in text)
    {
        action(s);
    }

    sw.Stop();

    Console.WriteLine($"{test} Done in {sw.ElapsedMilliseconds} ms");
}

答案 2 :(得分:-1)

使用ReadOnlySpan对我造成最大伤害的性能基准是,当我尝试在Windows应用商店中使用它时,它使我感到非常痛苦。 ReadOnlySpan <>东西与.NETNative工具链的编译不兼容(但似乎)。这反过来可能(也可能不会)触发一系列后续的WACK测试错误,这些错误将阻止提交到商店。

到目前为止,我花了两天时间试图将使用ReadOnlySpan <>的应用程序带入商店。远远超过我可能已经获得的任何可能的性能改进。