我们如何在此分类数据框中应用lambda函数?请注意,成绩是分类的。我希望那些高于C的人能够“通过”。而是显示“失败”。
import pandas as pd
dfg = pd.DataFrame(['A+', 'A', 'A-', 'B+', 'B', 'B-', 'C+', 'C', 'C-', 'D+', 'D'],
index=['excellent', 'excellent', 'excellent', 'good', 'good', 'good', 'ok', 'ok', 'ok', 'poor', 'poor'])
dfg.rename(columns={0: 'Grades'}, inplace=True)
dfg['Grades'] = dfg['Grades'].astype('category',
categories=['D', 'D+', 'C-', 'C', 'C+', 'B-', 'B', 'B+', 'A-', 'A', 'A+'],
ordered=True)
def Assess(row):
if row>'C':
return 'Pass'
return 'Fail'
dfg['Asses'] = dfg.apply(lambda x: Assess(x.Grades), axis=1)
dfg
查看结果
Grades Asses
excellent A+ Fail
excellent A Fail
excellent A- Fail
good B+ Fail
good B Fail
good B- Fail
ok C+ Pass
ok C Fail
ok C- Pass
poor D+ Pass
poor D Pass
答案 0 :(得分:4)
使用:
dfg['Assess'] = np.where(dfg['Grades']>'C','Pass','Fail')
dfg
输出:
Grades Assess
excellent A+ Pass
excellent A Pass
excellent A- Pass
good B+ Pass
good B Pass
good B- Pass
ok C+ Pass
ok C Fail
ok C- Fail
poor D+ Fail
poor D Fail
答案 1 :(得分:2)
您使用apply
的方式将字符串传递给函数,而不是绝对的东西。
相反,对系列本身使用比较操作,并允许熊猫处理其分类性质。
dfg.assign(Assess=dfg.Grades > 'C')
Grades Asses
excellent A+ True
excellent A True
excellent A- True
good B+ True
good B True
good B- True
ok C+ True
ok C False
ok C- False
poor D+ False
poor D False
您可以使用map
跟进此操作,以通过/失败
dfg.assign(Asses=dfg.Grades.gt('C').map({True: 'Pass', False: 'Fail'}))
Grades Asses
excellent A+ Pass
excellent A Pass
excellent A- Pass
good B+ Pass
good B Pass
good B- Pass
ok C+ Pass
ok C Fail
ok C- Fail
poor D+ Fail
poor D Fail
如果您确实想要lambda
(我不想要),则需要创建一个字典,将字母等级映射回数字值。
m = dict(map(reversed, enumerate(dfg.Grades.cat.categories)))
dfg.assign(Asses=dfg.apply(lambda row: 'Pass' if m[row.Grades] > m['C'] else 'Fail', 1))
Grades Asses
excellent A+ Pass
excellent A Pass
excellent A- Pass
good B+ Pass
good B Pass
good B- Pass
ok C+ Pass
ok C Fail
ok C- Fail
poor D+ Fail
poor D Fail