我有一个数据集,其中每个观察值可能属于不同的标签(多标签分类)。
我已经对其进行了SVM分类及其工作。 (在这里我有兴趣查看每个班级的准确性,因此我在代码中看到的每个班级都应用了OneVsRestClassifier
。)
我想查看测试数据中每个项目的预测值。换句话说,我想看看模型在测试样本中的每次观察预测了哪个标签。
例如: 这是传递给模型进行预测的数据
,sentences,ADR,WD,EF,INF,SSI,DI,others
0,"extreme weight gain, short-term memory loss, hair loss.",1,0,0,0,0,0,0
1,I am detoxing from Lexapro now.,0,0,0,0,0,0,1
2,I slowly cut my dosage over several months and took vitamin supplements to help.,0,0,0,0,0,0,1
3,I am now 10 days completely off and OMG is it rough.,0,0,0,0,0,0,1
4,"I have flu-like symptoms, dizziness, major mood swings, lots of anxiety, tiredness.",0,1,0,0,0,0,1
5,I have no idea when this will end.,1,0,0,0,0,0,1
然后我的模型已经预测了这些行的标签,我想查看每个行的预测映射。
我知道我们可以使用scikit-learn库中的Label Binarization
来做到这一点。
问题是fit_transform
的输入参数解释了here与我准备并传递给SVM分类的目标数据不同。
所以我不知道该怎么解决。
这是我的代码:
df = pd.read_csv("finalupdatedothers.csv")
categories = ['ADR','WD','EF','INF','SSI','DI','others']
train,test = train_test_split(df,random_state=42,test_size=0.3,shuffle=True)
X_train = train.sentences
X_test = test.sentences
SVC_pipeline = Pipeline([
('tfidf', TfidfVectorizer(stop_words=stop_words)),
('clf', OneVsRestClassifier(LinearSVC(), n_jobs=1)),
])
for category in categories:
print('... Processing {} '.format(category))
SVC_pipeline.fit(X_train,train[category]
prediction = SVC_pipeline.predict(X_test)
print('SVM Linear Test accuracy is {} '.format(accuracy_score(test[category], prediction)))
print 'SVM Linear f1 measurement is {} '.format(f1_score(test[category], prediction, average='weighted'))
print "\n"
感谢您的宝贵时间。
答案 0 :(得分:1)
这就是您想要做的,就是我映射了prediction
,它是一个表示您的categories
列表中的类标签索引的numpy数组。这是完整的代码。
import pandas as pd
import numpy as np
from sklearn import svm
from sklearn.datasets import samples_generator
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_regression
from sklearn.pipeline import Pipeline
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
df = pd.read_csv("finalupdatedothers.csv")
categories = ['ADR','WD','EF','INF','SSI','DI','others']
train,test = train_test_split(df,random_state=42,test_size=0.3,shuffle=True)
X_train = train.sentences
X_test = test.sentences
SVC_pipeline = Pipeline([
('tfidf', TfidfVectorizer(stop_words=[])),
('clf', OneVsRestClassifier(LinearSVC(), n_jobs=1)),
])
for category in categories:
print('... Processing {} '.format(category))
SVC_pipeline.fit(X_train,train[category])
prediction = SVC_pipeline.predict(X_test)
print([{X_test.iloc[i]:categories[prediction[i]]} for i in range(len(list(prediction))) ])
print('SVM Linear Test accuracy is {} '.format(accuracy_score(test[category], prediction)))
print ('SVM Linear f1 measurement is {} '.format(f1_score(test[category], prediction, average='weighted')))
print ("\n")
这是示例输出:
... Processing ADR
[{'extreme weight gain, short-term memory loss, hair loss.': 'ADR'}, {'I am detoxing from Lexapro now.': 'ADR'}]
SVM Linear Test accuracy is 0.5
SVM Linear f1 measurement is 0.3333333333333333
... Processing WD
[{'extreme weight gain, short-term memory loss, hair loss.': 'ADR'}, {'I am detoxing from Lexapro now.': 'ADR'}]
SVM Linear Test accuracy is 1.0
SVM Linear f1 measurement is 1.0
我希望这会有所帮助。