我正在尝试使用tf.estimator
和export_savedmodel()
来创建* .pb模型,这是对虹膜数据集(4个要素,3个类别)进行分类的简单分类器:
import tensorflow as tf
num_epoch = 500
num_train = 120
num_test = 30
# 1 Define input function
def input_function(x, y, is_train):
dict_x = {
"thisisinput" : x,
}
dataset = tf.data.Dataset.from_tensor_slices((
dict_x, y
))
if is_train:
dataset = dataset.shuffle(num_train).repeat(num_epoch).batch(num_train)
else:
dataset = dataset.batch(num_test)
return dataset
def my_serving_input_fn():
input_data = tf.placeholder(tf.string, [None], name='input_tensors')
receiver_tensors = {"inputs" : input_data}
# 2 Define feature columns
feature_columns = [
tf.feature_column.numeric_column(key="thisisinput", shape=4),]
features = tf.parse_example(
input_data,
tf.feature_column.make_parse_example_spec(feature_columns))
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
def main(argv):
tf.set_random_seed(1103) # avoiding different result of random
# 2 Define feature columns
feature_columns = [
tf.feature_column.numeric_column(key="thisisinput", shape=4),]
# 3 Define an estimator
classifier = tf.estimator.DNNClassifier(
feature_columns=feature_columns,
hidden_units=[10],
n_classes=3,
optimizer=tf.train.GradientDescentOptimizer(0.001),
activation_fn=tf.nn.relu,
model_dir = 'modeliris2/'
)
# Train the model
classifier.train(
input_fn=lambda:input_function(xtrain, ytrain, True)
)
# Evaluate the model
eval_result = classifier.evaluate(
input_fn=lambda:input_function(xtest, ytest, False)
)
print('\nTest set accuracy: {accuracy:0.3f}\n'.format(**eval_result))
print('\nSaving models...')
classifier.export_savedmodel("modeliris2pb", my_serving_input_fn)
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run(main)
这将产生一个saved_model.pb
文件。我确认该模型有效。我还可以制作另一个加载并运行它的程序。现在,我想使用Bazel总结并冻结模型。如果我构建了Bazel,然后运行以下命令:
bazel-bin/tensorflow/tools/graph_transforms/summarize_graph \
--in_graph=saved_model.pb
我收到以下错误:
[libprotobuf错误external / protobuf_archive / src / google / protobuf / text_format.cc:307]解析文本格式tensorflow.GraphDef时出错:1:1:文本中遇到无效的控制字符。
[libprotobuf错误external / protobuf_archive / src / google / protobuf / text_format.cc:307]解析文本格式tensorflow.GraphDef时出错:1:4:解释了非ascii代码点218。
[libprotobuf错误external / protobuf_archive / src / google / protobuf / text_format.cc:307]解析文本格式tensorflow.GraphDef时出错:1:4:预期的标识符,得到:。
2018-08-14 11:50:17.759617:E tensorflow / tools / graph_transforms / summarize_graph_main.cc:320]加载图'saved_model.pb'失败,无法将save_model.pb解析为二进制原型
(文件save_model.pb的文本和二进制解析均失败)
2018-08-14 11:50:17.759670:E tensorflow / tools / graph_transforms / summarize_graph_main.cc:322]用法:bazel-bin / tensorflow / tools / graph_transforms / summarize_graph
标志:
--in_graph =“”字符串输入图形文件名
--print_structure = false bool是否打印图形的网络连接
我不明白此错误。我尝试使用inception pb file,并且效果很好,所以我认为问题在于tf.estimator
如何构建.pb
文件。
使用export_savedmodel()
或tf.estimator
创建保存的模型时,我会丢失某些东西吗?
更新
Tensorflow版本:v1.9.0-0-g25c197e023 1.9.0
tf_env_collect.sh
的结果:
== cat /etc/issue ===============================================
Linux rianadam 4.15.0-32-generic #35-Ubuntu SMP Fri Aug 10 17:58:07 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
VERSION="18.04.1 LTS (Bionic Beaver)"
VERSION_ID="18.04"
VERSION_CODENAME=bionic
== are we in docker =============================================
No
== compiler =====================================================
c++ (Ubuntu 7.3.0-16ubuntu3) 7.3.0
Copyright (C) 2017 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
== uname -a =====================================================
Linux rianadam 4.15.0-32-generic #35-Ubuntu SMP Fri Aug 10 17:58:07 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux
== check pips ===================================================
numpy 1.15.0
protobuf 3.6.0
tensorflow-gpu 1.9.0
== check for virtualenv =========================================
True
== tensorflow import ============================================
tf.VERSION = 1.9.0
tf.GIT_VERSION = v1.9.0-0-g25c197e023
tf.COMPILER_VERSION = v1.9.0-0-g25c197e023
Sanity check: array([1], dtype=int32)
/home/rian/NgodingYuk/tf_env/env/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)
/home/rian/NgodingYuk/tf_env/env/lib/python3.6/importlib/_bootstrap.py:219: RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 88
return f(*args, **kwds)
== env ==========================================================
LD_LIBRARY_PATH /usr/local/cuda/lib64:/usr/local/cuda-9.0/lib64:/usr/local/cuda/lib64:/usr/local/cuda-9.0/lib64:
DYLD_LIBRARY_PATH is unset
== nvidia-smi ===================================================
Tue Aug 21 11:13:55 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.77 Driver Version: 390.77 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce 920M Off | 00000000:04:00.0 N/A | N/A |
| N/A 51C P0 N/A / N/A | 367MiB / 2004MiB | N/A Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 Not Supported |
+-----------------------------------------------------------------------------+
== cuda libs ===================================================
/usr/local/cuda-9.0/lib64/libcudart_static.a
/usr/local/cuda-9.0/lib64/libcudart.so.9.0.176
/usr/local/cuda-9.0/doc/man/man7/libcudart.7
/usr/local/cuda-9.0/doc/man/man7/libcudart.so.7
答案 0 :(得分:1)
当我尝试从使用custom tf.Estimator训练的模型中查找输入/输出节点时,遇到了同样的问题。错误的原因是,使用export_savedmodel
时获得的输出是 servable (根据我目前的理解,这是一个{ {1}}和其他元数据),而不仅仅是GraphDef
。
可以找到输入和输出节点。
GraphDef
我也使用了DNNEstimated罐头,因此OP的节点应该与我的相同,其他用户的名称取决于您的分类器,您的操作名称可能不同于# -*- coding: utf-8 -*-
import tensorflow as tf
from tensorflow.saved_model import tag_constants
with tf.Session(graph=tf.Graph()) as sess:
gf = tf.saved_model.loader.load(
sess,
[tf.saved_model.tag_constants.SERVING],
"/path/to/saved/model/")
nodes = gf.graph_def.node
print([n.name + " -> " + n.op for n in nodes
if n.op in ('Softmax', 'Placeholder')])
# ... ['Placeholder -> Placeholder',
# 'dnn/head/predictions/probabilities -> Softmax']
和Placeholder
。
现在有了输入/输出节点的名称,您可以冻结图,该图的地址为here
如果要使用训练有素的参数的值(例如量化权重),则需要运行tensorflow / python / tools / freeze_graph.py将检查点值转换为图形文件本身中的嵌入式常量。
Softmax
然后假设您已经建立了#!/bin/bash
python ./freeze_graph.py \
--in_graph="/path/to/model/saved_model.pb" \
--input_checkpoint="/MyModel/model.ckpt-xxxx" \
--output_graph="/home/user/pruned_saved_model_or_whatever.pb" \
--input_saved_model_dir="/path/to/model" \
--output_node_names="dnn/head/predictions/probabilities" \
graph_transforms
输出:
#!/bin/bash
tensorflow/bazel-bin/tensorflow/tools/graph_transforms/summarize_graph \
--in_graph=pruned_saved_model_or_whatever.pb
希望这会有所帮助。
更新(2018-12-03):
我打开了一个与之相关的github issue,似乎已在票证末尾列出的详细博客文章中得到解决。