MatMul op如何在Tensorflow中工作?

时间:2018-08-14 02:31:55

标签: c++ tensorflow

我注意到在Tensorflow中定义了MatMul op:

Shape函数:

Status MatMulShape(shape_inference::InferenceContext* c) {
   ShapeHandle a;
   TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 2, &a));
   ShapeHandle b;
   TF_RETURN_IF_ERROR(c->WithRank(c->input(1), 2, &b));
MatpulOp中的

和计算功能:

void Compute(OpKernelContext* ctx) override {
   const Tensor& a = ctx->input(0);
   const Tensor& b = ctx->input(1);

   // Check that the dimensions of the two matrices are valid.
   OP_REQUIRES(ctx, TensorShapeUtils::IsMatrix(a.shape()),
             errors::InvalidArgument("In[0] is not a matrix"));
   OP_REQUIRES(ctx, TensorShapeUtils::IsMatrix(b.shape()),
             errors::InvalidArgument("In[1] is not a matrix"));

这意味着输入的等级为2,但是以下操作没问题:

a=tf.placeholder(tf.int32, [None, None, None])
b=tf.placeholder(tf.int32, [None, None, None])
c=tf.matmul(a, b)

它包括一个额外的批次暗淡。我想知道它是如何工作的

我定义了一个ngram op,输入是1级张量:

TF_RETURN_IF_ERROR(c->WithRank(c->input(0), 1, &sent));

但批量应用时会发生错误:

a = tf.placeholder(tf.int32, [None, None])
c = ngram.ngram(a, vocab_size=5000, bucket_size=100000, word_ngrams=3)

为什么?

1 个答案:

答案 0 :(得分:0)

我检查了代码,发现批处理工作应另外完成。 python / ops / math_ops.py中的matmul函数:

def matmul (a, b, ....
    ...
    if (not a_is_sparse and not b_is_sparse) and ((a_shape is None or len(a_shape) > 2) and (b_shape is None or len(b_shape) > 2)):
        ...
        return gen_math_ops._batch_mat_mul(a, b, adj_x=adjoint_a, adj_y=adjoint_b, name=name)
python / ops / gen_math_ops.py中的

_batch_mat_mul函数:

def _batch_mat_mul(x, y, adj_x=False, adj_y=False, name=None):
    ...
    if _ctx.in_graph_mode():
        _, _, _op = _op_def_lib._apply_op_helper("BatchMatMul", x=x, y=y, adj_x=adj_x, adj_y=adj_y, name=name)

在BatchMatMul中计算(tensorflow / core / kernals / batch_matmul_op_impl.h):

void Compute(OpKernelContext* ctx) override {
    const Tensor& in0 = ctx->input(0);
    const Tensor& in1 = ctx->input(1);
    OP_REQUIRES(ctx, in0.dims() == in1.dims(),
                errors::InvalidArgument("In[0] and In[1] has different ndims: ",
                                        in0.shape().DebugString(), " vs. ",
                                        in1.shape().DebugString()));
    const int ndims = in0.dims();
    OP_REQUIRES(
        ctx, ndims >= 2,
        errors::InvalidArgument("In[0] and In[1] ndims must be >= 2: ", ndims));
    TensorShape out_shape;
    for (int i = 0; i < ndims - 2; ++i) {
      OP_REQUIRES(ctx, in0.dim_size(i) == in1.dim_size(i),
                  errors::InvalidArgument("In[0].dim(", i, ") and In[1].dim(",
                                          i, ") must be the same: ",
                                          in0.shape().DebugString(), " vs ",
                                          in1.shape().DebugString()));
      out_shape.AddDim(in0.dim_size(i));
    }
    auto n = (ndims == 2) ? 1 : out_shape.num_elements();
    auto d0 = in0.dim_size(ndims - 2);
    auto d1 = in0.dim_size(ndims - 1);
    Tensor in0_reshaped;
    CHECK(in0_reshaped.CopyFrom(in0, TensorShape({n, d0, d1})));
    auto d2 = in1.dim_size(ndims - 2);
    auto d3 = in1.dim_size(ndims - 1);
    Tensor in1_reshaped;
    CHECK(in1_reshaped.CopyFrom(in1, TensorShape({n, d2, d3})));
    if (adj_x_) std::swap(d0, d1);
    if (adj_y_) std::swap(d2, d3);
    OP_REQUIRES(ctx, d1 == d2,
                errors::InvalidArgument(
                    "In[0] mismatch In[1] shape: ", d1, " vs. ", d2, ": ",
                    in0.shape().DebugString(), " ", in1.shape().DebugString(),
                    " ", adj_x_, " ", adj_y_));
    out_shape.AddDim(d0);
    out_shape.AddDim(d3);
    Tensor* out = nullptr;
    OP_REQUIRES_OK(ctx, ctx->allocate_output(0, out_shape, &out));
    if (out->NumElements() == 0) {
      return;
    }
    if (in0.NumElements() == 0 || in1.NumElements() == 0) {
      functor::SetZeroFunctor<Device, Scalar> f;
      f(ctx->eigen_device<Device>(), out->flat<Scalar>());
      return;
    }
    Tensor out_reshaped;
    CHECK(out_reshaped.CopyFrom(*out, TensorShape({n, d0, d3})));
    LaunchBatchMatMul<Device, Scalar>::Launch(ctx, in0_reshaped, in1_reshaped,
                                              adj_x_, adj_y_, &out_reshaped);
  }

最后,每个矩阵乘法都是通过“运行”函数计算的:

static void Run(const Tensor& in_x, const Tensor& in_y, bool adj_x,
                bool adj_y, Tensor* out, int start, int limit) {
  for (int i = start; i < limit; ++i) {
    auto x = ConstTensorSliceToEigenMatrix(in_x, i);
    auto y = ConstTensorSliceToEigenMatrix(in_y, i);
    auto z = TensorSliceToEigenMatrix(out, i);
    // TODO(rmlarsen): Get rid of the special casing here when we have
    // upstreamed improvements for matrix*vector and vector*matrix to
    // Eigen's general matrix product.
    if (!adj_x && x.rows() == 1) {
      Multiply(adj_x, adj_y, x.row(0), y, z);
    } else if (adj_x && x.cols() == 1) {
      Multiply(adj_x, adj_y, x.col(0), y, z);
    } else if (!adj_y && y.cols() == 1) {
      Multiply(adj_x, adj_y, x, y.col(0), z);
    } else if (adj_y && y.rows() == 1) {
      Multiply(adj_x, adj_y, x, y.row(0), z);
    } else {
      Multiply(adj_x, adj_y, x, y, z);
    }
  }
}